基于肤色空间建模+连通域处理的人脸检测算法的MATLAB仿真

本文涉及的产品
视觉智能开放平台,分割抠图1万点
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,视频资源包5000点
简介: 基于肤色空间建模+连通域处理的人脸检测算法的MATLAB仿真

1.算法仿真效果
matlab2022a仿真结果如下:
2ff5a014f1da66f070e944967dc58723_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
2dabf6a5cf83225e5b98ef0e18a71cd2_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要

    在过去的几年里,人脸识别受到了广泛的关注,被认为是图像分析领域最有前途的应用之一。人脸检测可以考虑人脸识别操作的很大一部分。根据其强度将计算资源集中在持有人脸的图像部分。图片中的人脸检测方法很复杂,因为人脸存在可变性,例如姿势、表情、位置和方向、肤色、眼镜或面部毛发的存在、相机增益的差异、照明条件和图像分辨率。

   物体检测是计算机技术中的一种,它与图像处理和计算机视觉相联系,它与人脸、建筑物、树木、汽车等物体的检测实例相互作用。人脸检测算法的主要目的是确定图像中是否有任何人脸。

   近年来,在人脸识别和人脸检测领域提出了很多研究工作,以使其更加先进和准确,但是当 Viola-Jones 推出实时人脸检测器时,它在该领域掀起了一场革命,即能够实时、高精度地检测人脸。人脸检测是人脸识别的第一步,也是必不可少的一步,用于检测图像中的人脸。它是物体检测的一部分,可用于许多领域,如安防、生物识别、执法、娱乐、人身安全等。

    肤色模型是人脸非常重要的一个特性。 不同种族、年龄、性别的人的肤色看上去不同,但是这种不同主要集中在亮度上,在去除亮度的色度空间里,不同肤色的分布具有聚类性,色彩空间主要用YCbCr格式。 通过对大量的肤色像素的分析,肤色类聚在YCbCr色度空间的一个很小的范围内。由归一化色度分布图,可以看出不同的肤色具有相同的二维高斯模型 其中m为均值,C为协方差矩阵,通过这个肤色模型分布 可以得到待检测图像中任意一个像素点属于皮肤的概率。。对于某像素点s,从RGB空间转化到YCbCr色彩空间得到的色度值(Cb,Cr),则该像素的肤色概率密度可由下式计算得到: 式中,x=(Cb,Cr)T。

    在肤色识别中,常用的颜色空间为YCbCr颜色空间。在YCbCr颜色空间中,Y代表亮度,Cb和Cr分别代表蓝色分量和红色分量,两者合称为色彩分量。YCbCr颜色空间具有将色度与亮度分离的特点,在YCbCr色彩空间中,肤色的聚类特性比较好,而且是两维独立分布,能够比较好地限制肤色的分布区域,并且受人种的影响不大。对比RGB颜色空间和YCbCr颜色空间,当光强发生变化时,RGB颜色空间中(R,G,B)会同时发生变化,而YCbCr颜色空间中受光强相对独立,色彩分量受光强度影响不大,因此YCbCr颜色空间更适合用于肤色识别。

   由于肤色在YCbCr空间受亮度信息的影响较小,本算法直接考虑YCbCr空间的CbCr分量,映射为两维独立分布的CbCr空间。在CbCr空间下,肤色类聚性好,利用人工阈值法将肤色与非肤色区域分开,形成二值图像。

RBG转YCbCr:

Y = 0.257R+0.564G+0.098*B+16

Cb = -0.148R-0.291G+0.439*B+128

Cr = 0.439R-0.368G-0.071*B+128

   主要分为三大部分:(1)预处理,针对噪声,光照带来的影响进行消除。(2)基于肤色模型的肤色分割。(3)连通域分析,人脸区域定位。

   通过比较RGB,HSV,Ycbcr空间,发现Ycbcr和HSV空间在进行人脸肤色分割方面由于肤色范围紧密,不易受光照其他物体干扰(基于肤色模型的,如果背景中有与人脸颜色类似的物体,且距离较近很容易产生干扰,影响人脸区域定位的准确性,这也是这一算法不能解决的问题)。但是RGB与HSV空间的转换相比RGB到Ycbcr空间转换来说较为复杂些,所以我们采用Ycbcr空间进行人脸肤色的建模与分割。

  这种方法主要运用了统计学原理,认为肤色符合正态分布的随机样本也满足高斯分布。而高斯分布表达形式简单、直观。高斯模型通过计算像素的概率值构成连续的数据信息并得到一个肤色概率图,根据肤色大小完成肤色的确认。

3.MATLAB核心程序

    switch(i)
        case 1
            s = 'images\image_0011.jpg';
        case 2
            s = 'images\image_0031.jpg';
        case 3
            s = 'images\image_0061.jpg';
    end
    I=imread(s);
    I1=rgb2hsv(I);
    h=I1(:,:,1);
    s=I1(:,:,2);
    v=I1(:,:,3);
...................................................................
    
    figure,
    subplot(3,2,1),imshow(I),title('原图像');
    subplot(3,2,2),imshow(id1);title('hsv处理(原程序代码)');
    subplot(3,2,3),imshow(id2);title('hsv处理(完善程序代码)');
    subplot(3,2,4),imshow(f1);title('数学形态处理(开运算)');
    subplot(3,2,5),imshow(f2);title('数学形态处理(闭运算)');
    subplot(3,2,6),imshow(I);title('原图像肤色标记');
    rectangle('Position',STATS(1).BoundingBox,'EdgeColor','r');
end
相关文章
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
3天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
4天前
|
算法
基于电导增量MPPT控制算法的光伏发电系统simulink建模与仿真
本课题基于电导增量MPPT控制算法,使用MATLAB2022a的Simulink进行光伏发电系统的建模与仿真,输出系统电流、电压及功率。电导增量调制(IC)算法通过检测电压和电流变化率,实时调整光伏阵列工作点,确保其在不同光照和温度条件下始终处于最大功率输出状态。仿真结果展示了该算法的有效性,并结合PWM技术调节逆变流器占空比,提高系统效率和稳定性。
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
3天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
31 15
|
2天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
6月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
272 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
6月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
162 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
6月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
138 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码

热门文章

最新文章