高并发场景下JVM调优实践之路(3)

简介: 高并发场景下JVM调优实践之路

4.2 灰度方案/分析


为保证覆盖业务的高峰期,选择周五、周六、周日分别从两个机房随机选择一台线上实例,线上实例的指标符合预期后,再进行全量升级。


目标组  xx.xxx.60.6


采用方案2,即目标方案






-Xms4096M -Xmx4096M -Xmn1536M
-XX:MetaspaceSize=256M
-XX:MaxMetaspaceSize=256M
-XX:+UseParNewGC
-XX:+UseConcMarkSweepGC 
-XX:+CMSScavengeBeforeRemark


对照组1  xx.xxx.15.215


采用原始方案

-Xms4096M -Xmx4096M -Xmn1024M
-XX:PermSize=512M
-XX:MaxPermSize=512M



对照组2  xx.xxx.40.87


采用方案4,即候选目标方案


-Xms4096M -Xmx4096M -Xmn2048M
-XX:MetaspaceSize=256M
-XX:MaxMetaspaceSize=256M
-XX:+UseParNewGC
-XX:+UseConcMarkSweepGC 
-XX:+CMSScavengeBeforeRemark




灰度3台机器。


我们先分析下Young GC相关指标:


Young GC次数



Young GC累计耗时



Young GC单次耗时



可以看出,与原始方案相比,目标方案的YGC次数减少50%,累积耗时减少47%,吞吐量提升的同时,服务停顿的频率大大降低,而代价是单次Young GC的耗时增长3ms,收益是非常高的。


对照方案2即Young区2G的方案整体表现稍逊与目标方案,再分析Full GC指标。


老年代内存增长情况



Full GC次数



Full GC累计/单次耗时



与原始方案相比,使用目标方案时,老年代增长的速度要缓慢很多,基本在观测周期内Full GC发生的次数从155次减少至27次,减少82%,停顿时间均值从399ms减少至60ms,减少85%,毛刺也非常少。


对照方案2即Young区2G的方案整体表现逊于目标方案。到这里,可以看出,目标方案从各个维度均远优于原始方案,调优目标也基本达成。


但细心的同学会发现,目标方案相对原始方案,"Full GC"(实际上是CMS Background GC)耗时更加平稳,但每个若干次"Full GC"后会有一个耗时很高的毛刺出现,这意味这个用户请求在这个时刻会停顿2-3s,能否进一步优化,给用户一个更加极致的体验呢?




相关文章
|
7天前
|
存储 监控 Java
JVM进阶调优系列(8)如何手把手,逐行教她看懂GC日志?| IT男的专属浪漫
本文介绍了如何通过JVM参数打印GC日志,并通过示例代码展示了频繁YGC和FGC的场景。文章首先讲解了常见的GC日志参数,如`-XX:+PrintGCDetails`、`-XX:+PrintGCDateStamps`等,然后通过具体的JVM参数和代码示例,模拟了不同内存分配情况下的GC行为。最后,详细解析了GC日志的内容,帮助读者理解GC的执行过程和GC处理机制。
|
13天前
|
缓存 监控 Java
Java 线程池在高并发场景下有哪些优势和潜在问题?
Java 线程池在高并发场景下有哪些优势和潜在问题?
|
15天前
|
Arthas 监控 数据可视化
JVM进阶调优系列(7)JVM调优监控必备命令、工具集合|实用干货
本文介绍了JVM调优监控命令及其应用,包括JDK自带工具如jps、jinfo、jstat、jstack、jmap、jhat等,以及第三方工具如Arthas、GCeasy、MAT、GCViewer等。通过这些工具,可以有效监控和优化JVM性能,解决内存泄漏、线程死锁等问题,提高系统稳定性。文章还提供了详细的命令示例和应用场景,帮助读者更好地理解和使用这些工具。
|
18天前
|
NoSQL Java Redis
京东双十一高并发场景下的分布式锁性能优化
【10月更文挑战第20天】在电商领域,尤其是像京东双十一这样的大促活动,系统需要处理极高的并发请求。这些请求往往涉及库存的查询和更新,如果处理不当,很容易出现库存超卖、数据不一致等问题。
39 1
|
21天前
|
监控 架构师 Java
JVM进阶调优系列(6)一文详解JVM参数与大厂实战调优模板推荐
本文详述了JVM参数的分类及使用方法,包括标准参数、非标准参数和不稳定参数的定义及其应用场景。特别介绍了JVM调优中的关键参数,如堆内存、垃圾回收器和GC日志等配置,并提供了大厂生产环境中常用的调优模板,帮助开发者优化Java应用程序的性能。
|
25天前
|
Arthas 监控 Java
JVM知识体系学习七:了解JVM常用命令行参数、GC日志详解、调优三大方面(JVM规划和预调优、优化JVM环境、JVM运行出现的各种问题)、Arthas
这篇文章全面介绍了JVM的命令行参数、GC日志分析以及性能调优的各个方面,包括监控工具使用和实际案例分析。
38 3
|
28天前
|
Java API 对象存储
JVM进阶调优系列(2)字节面试:JVM内存区域怎么划分,分别有什么用?
本文详细解析了JVM类加载过程的关键步骤,包括加载验证、准备、解析和初始化等阶段,并介绍了元数据区、程序计数器、虚拟机栈、堆内存及本地方法栈的作用。通过本文,读者可以深入了解JVM的工作原理,理解类加载器的类型及其机制,并掌握类加载过程中各阶段的具体操作。
|
26天前
|
算法 Java
JVM进阶调优系列(4)年轻代和老年代采用什么GC算法回收?
本文详细介绍了JVM中的GC算法,包括年轻代的复制算法和老年代的标记-整理算法。复制算法适用于年轻代,因其高效且能避免内存碎片;标记-整理算法则用于老年代,虽然效率较低,但能有效解决内存碎片问题。文章还解释了这两种算法的具体过程及其优缺点,并简要提及了其他GC算法。
 JVM进阶调优系列(4)年轻代和老年代采用什么GC算法回收?
|
22天前
|
Java
JVM进阶调优系列(5)CMS回收器通俗演义一文讲透FullGC
本文介绍了JVM中CMS垃圾回收器对Full GC的优化,包括Stop the world的影响、Full GC触发条件、GC过程的四个阶段(初始标记、并发标记、重新标记、并发清理)及并发清理期间的Concurrent mode failure处理,并简述了GC roots的概念及其在GC中的作用。
|
27天前
|
Java Linux 应用服务中间件
【编程进阶知识】高并发场景下Bio与Nio的比较及原理示意图
本文介绍了在Linux系统上使用Tomcat部署Java应用程序时,BIO(阻塞I/O)和NIO(非阻塞I/O)在网络编程中的实现和性能差异。BIO采用传统的线程模型,每个连接请求都会创建一个新线程进行处理,导致在高并发场景下存在严重的性能瓶颈,如阻塞等待和线程创建开销大等问题。而NIO则通过事件驱动机制,利用事件注册、事件轮询器和事件通知,实现了更高效的连接管理和数据传输,避免了阻塞和多级数据复制,显著提升了系统的并发处理能力。
40 0

热门文章

最新文章