【复杂网络建模】——Python可视化重要节点识别(PageRank算法)

本文涉及的产品
函数计算FC,每月15万CU 3个月
简介: 【复杂网络建模】——Python可视化重要节点识别(PageRank算法)

一、复杂网络建模


复杂网络建模是指对复杂网络进行建模和分析的过程,其中复杂网络是由大量节点和连接组成的网络,这些节点和连接之间的关系可以是非常复杂的。复杂网络建模通常使用图论和网络科学的方法,通过将节点和边建模为数学对象来研究网络的结构、动态和行为。


在复杂网络建模中,常见的方法包括图论分析、随机图模型、小世界网络模型、无标度网络模型等。这些方法可以用来描述网络的拓扑结构、度分布、聚类系数、路径长度等特征,并通过模拟和仿真来研究网络的演化和行为。


复杂网络建模在许多领域都有应用,如社交网络、脑网络、物流网络、交通网络等。通过对这些网络进行建模和分析,可以帮助我们更好地理解网络的特性和行为,以及预测和优化网络的性能。


二、建模的算法


复杂网络建模的算法包括以下几种:


  1. 图论分析:通过对网络的节点和边进行数学建模,分析网络的拓扑结构、度分布、聚类系数、路径长度等特征。常用的图论算法包括最短路径算法、最大流算法、最小生成树算法等。

  2. 随机图模型:通过随机生成网络模型来研究网络的性质和行为。常用的随机图模型包括Erdős-Rényi模型、Watts-Strogatz模型、Barabási-Albert模型等。

  3. 小世界网络模型:通过将传统的规则网络和随机网络相结合,模拟真实世界中的网络结构,研究网络的小世界特性。常用的小世界网络模型包括Watts-Strogatz模型和Newman-Watts模型等。

  4. 无标度网络模型:通过分析网络节点度分布的特点,建立节点度数的幂律分布模型,研究网络的无标度特性。常用的无标度网络模型包括Barabási-Albert模型和Price模型等。

  5. 复杂网络演化算法:通过模拟和仿真网络的演化过程,研究网络的动态性质和行为。常用的复杂网络演化算法包括基于优化的算法、基于遗传算法的算法和基于神经网络的算法等。


三、使用PageRank算法进行网络重要节点识别


1、PageRank算法

PageRank算法是一种用于确定网络中节点重要性的算法,最初由Google公司用于对网页进行排序。在复杂网络中,PageRank算法同样可以用于识别节点的重要性。其基本思想是,一个节点的重要性取决于与它相连的节点的重要性,重要性越高的节点贡献越大。


具体来说,PageRank算法将节点的重要性定义为其在整个网络中被访问的概率。该算法通过迭代计算节点的PageRank值来得到每个节点的重要性。在每次迭代中,每个节点的PageRank值都会根据其相邻节点的PageRank值进行更新,具体更新公式如下:


93938e0c220f47169a5246d8df1df078.png


其中,$PR(u)$表示节点$u$的PageRank值,$d$为阻尼系数,$N$为网络中节点的总数,$B_u$表示与节点$u$相邻的节点集合,$N_v$表示节点$v$的出度(即与$v$相邻的节点数)。初始时,每个节点的PageRank值都可以设置为一个相同的值(例如1/N)。


PageRank算法的迭代过程可以一直进行下去,直到节点的PageRank值收敛。通常情况下,迭代次数需要设置一个上限,以确保算法能够在合理的时间内结束。


需要注意的是,当网络比较大时,直接使用PageRank算法可能会比较慢。此时可以使用PageRank的快速算法,如Power Iteration(幂迭代)算法、Arnoldi迭代算法等。


2、基于PageRank算法的ER网络重要节点识别

当ER网络比较大时,使用基于度中心性的方法会比较慢,可以使用PageRank等算法来实现重要节点识别。下面是基于PageRank算法的ER网络重要节点识别代码示例:


importnetworkxasnximportrandom#创建ER网络N=1000p=0.05er_graph=nx.erdos_renyi_graph(N, p, seed=1)
#计算节点的PageRank值pr=nx.pagerank(er_graph, alpha=0.9)
#排序输出PageRank值最高的k个节点k=10top_k=sorted(pr.items(), key=lambdax: x[1], reverse=True)[:k]
print("PageRank Top-k nodes:")
fornode, valueintop_k:
print("Node: {}, PageRank value: {}".format(node, value))


在上面的代码中,我们首先使用networkx库中的erdos_renyi_graph()函数创建一个ER网络。然后使用pagerank()函数计算每个节点的PageRank值,并使用sorted()函数对结果进行排序,找到PageRank值最高的前k个节点。最后输出结果即可。


425f32b1bd07407c9a4e9213dde3ebed.png


可以使用networkx库将ER网络可视化,并将PageRank值高的节点着色,以便更直观地展示重要节点的位置。下面是代码示例:


importnetworkxasnximportrandomimportmatplotlib.pyplotasplt#创建ER网络N=1000p=0.05er_graph=nx.erdos_renyi_graph(N, p, seed=1)
#计算节点的PageRank值pr=nx.pagerank(er_graph, alpha=0.9)
#将PageRank值映射到节点颜色color_map= []
fornodeiner_graph.nodes():
ifnodeinpr.keys():
color_map.append(pr[node])
else:
color_map.append(0)
#可视化ER网络pos=nx.spring_layout(er_graph, seed=1)
nx.draw(er_graph, pos, node_color=color_map, cmap=plt.cm.Reds)
plt.show()


在上面的代码中,我们首先使用spring_layout()函数将ER网络的节点布局进行可视化,并根据每个节点的PageRank值将其着色。最后使用draw()函数将网络可视化出来。可以通过调整参数和颜色映射等来改变可视化效果。


3e696dc9b9374c7da3e2298eede8348d.png


3、基于PageRank算法的小世界网络重要节点识别


importnetworkxasnximportrandom#创建小世界网络N=1000k=10p=0.2ws_graph=nx.watts_strogatz_graph(N, k, p, seed=1)
#计算节点的PageRank值pr=nx.pagerank(ws_graph, alpha=0.9)
#排序输出PageRank值最高的k个节点k=10top_k=sorted(pr.items(), key=lambdax: x[1], reverse=True)[:k]
print("PageRank Top-k nodes:")
fornode, valueintop_k:
print("Node: {}, PageRank value: {}".format(node, value))

1a5e3339d7194472b9f073c36a79ed6a.png

展示top-10的结果。


我们首先使用networkx库中的watts_strogatz_graph()函数创建一个小世界网络。然后使用pagerank()函数计算每个节点的PageRank值,并使用sorted()函数对结果进行排序,找到PageRank值最高的前k个节点。最后输出结果即可。


代码可视化:


#coding: utf-8importnetworkxasnximportmatplotlib.pyplotasplt#创建小世界网络N=500k=10p=0.2ws_graph=nx.watts_strogatz_graph(N, k, p, seed=1)
#计算节点的PageRank值pr=nx.pagerank(ws_graph, alpha=0.9)
#绘制小世界网络pos=nx.spring_layout(ws_graph, seed=1)
nx.draw_networkx(ws_graph, pos, node_size=30, cmap=plt.cm.Reds)
#根据节点的PageRank值给节点上色node_color= [pr[node] fornodeinws_graph.nodes()]
cbar=plt.colorbar(plt.scatter([], [], c=[], cmap=plt.cm.Reds))
cbar.ax.set_ylabel('PageRank Value')
nx.draw_networkx_nodes(ws_graph, pos, node_size=30, cmap=plt.cm.Reds, node_color=node_color)
plt.axis('off')
plt.show()


615b65b345b6404a885027c4b69d1d70.png


我们首先使用spring_layout()函数计算小世界网络中每个节点的位置,并使用draw_networkx()函数将网络绘制出来。然后根据节点的PageRank值,使用scatter()函数绘制一个空的散点图,并在散点图旁边添加一个颜色条,用于表示PageRank值的大小。最后,使用draw_networkx_nodes()函数对节点进行上色,将节点的颜色与其PageRank值相关联。最终,我们可以得到一张小世界网络及其节点PageRank值的可视化图像。


4、基于PageRank算法的无标度网络的重要节点识别

importnetworkxasnx#创建无标度网络N=1000m=4ba_graph=nx.barabasi_albert_graph(N, m, seed=1)
#计算节点的PageRank值pr=nx.pagerank(ba_graph, alpha=0.9)
#排序输出PageRank值最高的k个节点k=10top_k=sorted(pr.items(), key=lambdax: x[1], reverse=True)[:k]
print("PageRank Top-k nodes:")
fornode, valueintop_k:
print("Node: {}, PageRank value: {}".format(node, value))


我们首先使用networkx库中的barabasi_albert_graph()函数创建一个无标度网络。然后使用pagerank()函数计算每个节点的PageRank值,并使用sorted()函数对结果进行排序,找到PageRank值最高的前k个节点。最后输出结果即可。


f2593466f55446a2a8b0f1e806ac69ea.png


我们首先使用spring_layout()函数计算无标度网络中每个节点的位置,并使用draw_networkx()函数将网络绘制出来。然后根据节点的PageRank值,使用scatter()函数绘制一个空的散点图,并在散点图旁边添加一个颜色条,用于表示PageRank值的大小。最后,使用draw_networkx_nodes()函数对节点进行上色,将节点的颜色与其PageRank值相关联。最终,我们可以得到一张无标度网络及其节点PageRank值的可视化图像。


四、ER网络、小世界网络、无标度网络的区别


ER网络、小世界网络和无标度网络是三种常见的复杂网络模型,它们在重要节点识别上有一些区别。


ER网络是一种随机图模型,其中节点之间的边是随机地出现的,没有任何特定的模式。因此,ER网络中的节点在度分布上呈现出近似于泊松分布的随机性,这意味着节点的度数差异不大。在ER网络中,节点的重要性主要由其度数决定,即度中心性是一种常用的重要性度量方法。


小世界网络是介于随机网络和完全网络之间的一种网络模型。在小世界网络中,大部分节点仍然与其它节点具有短距离连接,但是也存在一些长距离连接,从而形成了高度聚集的社交圈子。在小世界网络中,节点的重要性主要由其在网络中的位置决定,即介数中心性和接近中心性是常用的重要性度量方法。


无标度网络是一种特殊的网络模型,其中一些节点具有非常高的度数,而大多数节点只有很少的连接。在无标度网络中,节点的度数呈幂律分布,即少数节点的度数非常高,而大多数节点的度数非常低。在这种网络中,重要节点通常是那些具有高度中心性和介数中心性的节点,这些节点通常是网络的“枢纽”。


因此,这三种不同的网络模型在重要节点识别上有不同的重点和方法。在ER网络中,节点的度数是主要的重要性度量,而在小世界网络中,节点的位置和中心性是主要的重要性度量。而在无标度网络中,节点的度数、中心性和位置都是重要性度量的重点。

相关实践学习
【文生图】一键部署Stable Diffusion基于函数计算
本实验教你如何在函数计算FC上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。函数计算提供一定的免费额度供用户使用。本实验答疑钉钉群:29290019867
建立 Serverless 思维
本课程包括: Serverless 应用引擎的概念, 为开发者带来的实际价值, 以及让您了解常见的 Serverless 架构模式
目录
相关文章
|
1月前
|
搜索推荐 程序员 调度
精通Python异步编程:利用Asyncio与Aiohttp构建高效网络应用
【10月更文挑战第5天】随着互联网技术的快速发展,用户对于网络应用的响应速度和服务质量提出了越来越高的要求。为了构建能够处理高并发请求、提供快速响应时间的应用程序,开发者们需要掌握高效的编程技术和框架。在Python语言中,`asyncio` 和 `aiohttp` 是两个非常强大的库,它们可以帮助我们编写出既简洁又高效的异步网络应用。
121 1
|
9天前
|
数据采集 缓存 定位技术
网络延迟对Python爬虫速度的影响分析
网络延迟对Python爬虫速度的影响分析
|
10天前
|
Python
Python中的异步编程:使用asyncio和aiohttp实现高效网络请求
【10月更文挑战第34天】在Python的世界里,异步编程是提高效率的利器。本文将带你了解如何使用asyncio和aiohttp库来编写高效的网络请求代码。我们将通过一个简单的示例来展示如何利用这些工具来并发地处理多个网络请求,从而提高程序的整体性能。准备好让你的Python代码飞起来吧!
28 2
|
17天前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
60 6
|
20天前
|
安全 网络安全 数据安全/隐私保护
|
26天前
|
存储 网络安全 数据安全/隐私保护
|
5天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
26 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
5天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
21 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
5天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
25 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
10天前
|
算法 Python
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果
在Python编程中,分治法、贪心算法和动态规划是三种重要的算法。分治法通过将大问题分解为小问题,递归解决后合并结果;贪心算法在每一步选择局部最优解,追求全局最优;动态规划通过保存子问题的解,避免重复计算,确保全局最优。这三种算法各具特色,适用于不同类型的问题,合理选择能显著提升编程效率。
28 2