牛逼哄哄的 JD-hotkey !

简介: 牛逼哄哄的 JD-hotkey !


来源:gitee.com/jd-platform-opensource/hotkey


JD-hotkey 是京东 APP 后台热数据探测框架,历经多次高压压测和 2020 年京东 618 大促考验。

在上线运行的这段时间内,每天探测的key数量数十亿计,精准捕获了大量爬虫、刷子用户,另准确探测大量热门商品并毫秒级推送到各个服务端内存,大幅降低了热数据对数据层的查询压力,提升了应用性能。

该框架历经多次压测,性能指标主要有两个

1 探测性能:

8核单机worker端每秒可接收处理16万个key探测任务,16核单机至少每秒平稳处理30万以上,实际压测达到37万,CPU平稳支撑,框架无异常。

2 推送性能:

在高并发写入的同时,对外推送目前性能约平稳推送每秒10-12万次,譬如有1千台server,一台worker上每秒产生了100个热key,那么这1秒会平稳推送100 * 1000 = 10万次,10万次推送会明确在1s内全部送达。如果是写入少,推送多,以纯推送来计数的话,该框架每秒可稳定对外推送40-60万次平稳,80万次极限可撑几秒。

每秒单机吞吐量(写入+对外推送)目前在70万左右稳定。

在真实业务场景中,可用1:1000的比例,即1台worker支撑1000台业务服务端的key探测任务,即可带来极大的数据存储资源节省(如对redis集群的扩充)。

基于 Spring Boot + MyBatis Plus + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

介绍

对任意突发性的无法预先感知的热点请求,包括并不限于热点数据(如突发大量请求同一个商品)、热用户(如爬虫、刷子)、热接口(突发海量请求同一个接口)等,进行毫秒级精准探测到。

然后对这些热数据、热用户等,推送到该应用部署的所有机器JVM内存中,以大幅减轻对后端数据存储层的冲击,并可以由客户端决定如何使用这些热key(譬如对热商品做本地缓存、对热用户进行拒绝访问、对热接口进行熔断或返回默认值)。这些热key在整个应用集群内保持一致性。

核心功能:

热数据探测并推送至集群各个服务器。

基于 Spring Cloud Alibaba + Gateway + Nacos + RocketMQ + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

适用场景

  • mysql热数据本地缓存
  • redis热数据本地缓存
  • 黑名单用户本地缓存
  • 爬虫用户限流
  • 接口、用户维度限流
  • 单机接口、用户维度限流限流
  • 集群用户维度限流
  • 集群接口维度限流

worker 端强悍的性能表现

每10秒打印一行,totalDealCount代表处理过的key总量,可以看到每10秒处理量在270万-310万之间,对应每秒30万左右QPS。

仅需要很少的机器,即可完成海量key的实时探测计算推送任务。比扩容redis集群规模成本低太多。

界面效果



相关文章
|
SQL 运维 关系型数据库
一款 SQL 自动检查神器,再也不用担心 SQL 出错了,自动补全、回滚等功能大全
一款 SQL 自动检查神器,再也不用担心 SQL 出错了,自动补全、回滚等功能大全
352 0
|
运维 负载均衡 算法
MySQL MGR模式介绍
MGR是Mysql Group Replication(组复制)的缩写,Mysql5.7之后是以一个Mysql插件的形式集成在Mysql中,用于创建可伸缩、高可用、可容错的复制架构,是Mysql集群的一种形式
2557 0
MySQL MGR模式介绍
|
5月前
|
存储 自然语言处理 算法
RAG系统文本分块优化指南:9种实用策略让检索精度翻倍
本文深入探讨了RAG系统中的九种文本分块策略。固定大小分块简单高效,但可能破坏语义完整性;基于句子和语义的分块保留上下文,适合语义任务;递归与滑动窗口分块灵活控制大小;层次化和主题分块适用于结构化内容;特定模态分块处理多媒体文档;智能代理分块则通过大语言模型实现动态优化。开发者需根据文档类型、需求及资源选择合适策略,以提升RAG系统的性能和用户体验。作者Cornellius Yudha Wijaya详细分析了各策略的技术特点与应用场景。
991 1
RAG系统文本分块优化指南:9种实用策略让检索精度翻倍
|
7月前
|
分布式计算 物联网 虚拟化
《深度揭秘:软总线如何实现异构网络组网及其独特优势》
软总线技术是解决异构网络组网难题的关键力量,通过协议抽象与归一化、总线中枢智能解析、动态拓扑构建及设备虚拟化管理等方式,实现高效互联。它降低开发复杂度,提升设备兼容性与扩展性,保障数据传输的高效性与稳定性,为万物互联提供坚实支撑。在智能家居、智能工厂和交通等领域,软总线展现出强大优势,推动多设备协同与智能化发展,助力数字化转型与未来创新。
334 3
|
NoSQL Java 关系型数据库
这个评论系统设计碉堡了
先赞后看,南哥助你Java进阶一大半官网给出了Facebook评论系统的高级设计图,Facebook的评论竟然是支持实时刷新的。也就是说用户不用刷新帖子,只要帖子有新的评论就会自动推送到用户端,这里Facebook使用的便是每天在全球有设备在使用的WebSocket技术。我是南哥,一个Java学习与进阶的领路人。相信对你通关面试、拿下Offer进入心心念念的公司有所帮助。
491 5
这个评论系统设计碉堡了
|
Ubuntu Linux 网络安全
在Linux中,如何禁用root用户直接SSH登录?
在Linux中,如何禁用root用户直接SSH登录?
|
移动开发 JavaScript 前端开发
学习vue3使用在线官方开发环境play.vuejs.org进行测试
学习vue3使用在线官方开发环境play.vuejs.org进行测试
274 1
|
算法 前端开发
前端算法-最大三角形面积-鞋带公式&-海伦公式
前端算法-最大三角形面积-鞋带公式&-海伦公式
347 0
|
缓存 安全 算法
高性能无锁并发框架Disruptor,太强了!
Disruptor是一个开源框架,研发的初衷是为了解决高并发下队列锁的问题,最早由LMAX提出并使用,能够在无锁的情况下实现队列的并发操作,并号称能够在一个线程里每秒处理6百万笔订单官网:lmax-exchange.github.io/disruptor/目前,包括Apache Storm、Camel、Log4j2在内的很多知名项目都应用了Disruptor以获取高性能为什么会产生Disruptor框架「目前Java内置队列保证线程安全的方式:」ArrayBlockingQueue:基于数组形式的队列,通过加锁的方式,来保证多线程情况下数据的安全;LinkedBlockingQue基于链表形式
|
存储 分布式计算 供应链
数据中台实战(03)-构建数据中台的三要素:方法论、组织和技术
数据中台实战(03)-构建数据中台的三要素:方法论、组织和技术
877 0
数据中台实战(03)-构建数据中台的三要素:方法论、组织和技术