基于Bayes估计的数据融合一般步骤

简介: 基于Bayes估计的数据融合一般步骤

1. 置信距离矩阵

计算m个传感器数据的置信距离矩阵,为简化计算,当测试数据服从正态分布时可利用误差函数计算置信距离。

1.1.png

2. 距离临界值

选择合适的距离临界值,由置信距离矩阵产生关系矩阵。

3. 最佳融合数

由关系矩阵对多传感器数据进行选择,产生最佳融合数。

3.png

4.  参数估计值

和最佳融合数对应的代入Bayes融合估计公式求的参数估计值。

4.png

5. 总结

上文带大家认识基于Bayes估计的数据融合一股步骤。后续会教大家更加奇特的操作,欢迎一键三连😂😂😂

在以后的博文中我们将分享更多生活技巧,美好生活每一天!好好学习天天向上,从而实现对外部世界进行感知,充分认识这个有机与无机的环境,科学地合理地进行创作和发挥效益,然后为人类社会发展贡献一点微薄之力。


目录
相关文章
|
6月前
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
【R语言实战】——带有高斯新息的金融时序的GARCH模型拟合预测及VAR/ES风险度量
|
6月前
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
【R语言实战】——带有新息为标准学生t分布的金融时序的GARCH模型拟合预测
|
6月前
|
机器学习/深度学习 数据可视化
数据分享|R语言逻辑回归Logisitc逐步回归训练与验证样本估计分析心脏病数据参数可视化
数据分享|R语言逻辑回归Logisitc逐步回归训练与验证样本估计分析心脏病数据参数可视化
|
6月前
|
数据可视化 vr&ar Python
时间序列分析技巧(二):ARIMA模型建模步骤总结
时间序列分析技巧(二):ARIMA模型建模步骤总结
|
6月前
|
前端开发 数据可视化
R语言广义线性混合模型(GLMM)bootstrap预测置信区间可视化
R语言广义线性混合模型(GLMM)bootstrap预测置信区间可视化
|
6月前
|
前端开发
数据分享|R语言零膨胀泊松回归ZERO-INFLATED POISSON(ZIP)模型分析露营钓鱼数据实例估计IRR和OR
数据分享|R语言零膨胀泊松回归ZERO-INFLATED POISSON(ZIP)模型分析露营钓鱼数据实例估计IRR和OR
|
6月前
|
存储 移动开发 算法
SPSS用KMEANS(K均值)、两阶段聚类、RFM模型在P2P网络金融研究借款人、出款人行为数据规律
SPSS用KMEANS(K均值)、两阶段聚类、RFM模型在P2P网络金融研究借款人、出款人行为数据规律
|
6月前
|
存储 资源调度 数据可视化
R语言STAN贝叶斯线性回归模型分析气候变化影响北半球海冰范围和可视化检查模型收敛性
R语言STAN贝叶斯线性回归模型分析气候变化影响北半球海冰范围和可视化检查模型收敛性
|
6月前
Stata广义矩量法GMM面板向量自回归 VAR模型选择、估计、Granger因果检验分析投资、收入和消费数据
Stata广义矩量法GMM面板向量自回归 VAR模型选择、估计、Granger因果检验分析投资、收入和消费数据
|
6月前
|
机器学习/深度学习 数据可视化 算法
R语言高维数据的主成分pca、 t-SNE算法降维与可视化分析案例报告
R语言高维数据的主成分pca、 t-SNE算法降维与可视化分析案例报告