单体架构服务转型至分布式的踩坑经历

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介: 单体架构服务转型至分布式的踩坑经历



背景

我们在聊架构风格之前先明确一个问题,什么是架构?我们为什么要选择架构?用来解决哪些问题?

什么是架构

书本定义:“软件的架构是一种抽象的结构,他由软件的各个组成部分和这些部分之间的依赖关系构成”。

我的理解是,架构就是根据业务选择合适的技术、中间件,并且按照合适的设计模式对这些模块,进行组装来满足业务特性的需求。

选择架构风格的目的

我们选择架构风格的初衷在于 “三更原则”(自己的理解) :更好地降本提效、更快地发版上线、更好地维护系统稳定性。

任何一个架构风格,都可以实现功能性需求,但是一个好的架构风格能在功能性需求之上,提升非功能性需求。那么你可能会问,什么是非功能性需求?举例:扩展性、稳定性等等。

这里将会以我认知结合踩过的坑,来给大家详细讲一下,我们是如何从单体架构演进到分布式架构。在向分布式单体架构的演进的道路上,又是如何进行的抉择,以及为什么最后同时选择了 微服务架构+分布式架构 的原因。接下来就结合一个系统来作为案例,贯穿主线讲解。

首先来讲一下,最初的单体架构的经历和转型。

基于 Spring Boot + MyBatis Plus + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

单体架构

我们在系统创建之初,往往都是集中业务、单点部署系统,所有业务打一个包,快速上线。满足了业务初期的快速发版上线,而且适合中小公司没有自己的 PaaS 平台,应对初期快速迭代的业务,开发、迭代、测试、发布都是非常的便捷。那么单体架构都有什么类型呢?

单体架构类型

单体架构也分为大泥团架构、分层单体架构、模块化单体架构,他们的区别是什么呢?

  • 大泥团单体架构 :毫无分层、所有模块聚焦在一起,相互穿插(除非是你接手需要改造,否则不要创建这样的架构风格。这种大泥团架构很难拆分,到最后的下场往往都是重新搭建);
  • 分层单体架构 :普遍的选择。架构进行了简单的分层,比如传统的 MVC 三层架构;
  • 模块化单体架构 :一般是随着业务的发展,由分层单体架构演变而来,特点就是引入了多个业务模块并且提供相应的服务能力。

单体架构的优缺点

优点

  • 应用的开发很简单
  • 易于对应用程序大规模的更改
  • 测试相对简单、直观
  • 部署简单明了
  • 横向扩展不费吹灰之力

在业务的初期,单体架构的优点,无论从哪个方面来说,都优于其他架构风格,但是随着业务的增加、耦合,单体架构的缺点也逐渐暴露出来,这个也符合“康威定律”。那么单体架构的“后期”会暴露出哪些问题呢?

缺点

  • 代码库膨胀
  • 过度的复杂性会吓退开发者
  • 开发速度慢
  • 从代码提交到实际部署的周期很长,而且容易出问题
  • 难以扩展
  • 系统的稳定性得不到保障
  • 需要长期依赖某个可能过时的技术栈

单体架构的这些缺点,其实影响的还是我上面提到的“三更原则”。经过上面的铺垫,相信大家已经对单体架构风格已经有了简单的理解。

光有方法论是不行的,我们得结合项目以及代码片段来加深理解,做到真正的应用。接下来我就用一个库存系统来进行串联进行讲解。先通过这张图来了解下库存系统是用来做什么的?

  • 创建之初,1 个服务提供商品库存维护、库存查询、库存扣减能力。
  • 随着业务的发展,库存面向多个服务:B 端业务,平台内部业务系统、平台外部中台。C 端业务,订单商品扣减库存、网关查询库存数量。

单体架构的案例——库存系统

最初的库存代码分层如下:

  • api :对外提供的 Dubbo 服务
  • common :封装了公共方法
  • dao :封装了数据库 DHCP 交互
  • domain :实体类
  • inner-api :系统内部 API 交互
  • router :废弃
  • rpc :上下游 RCP 交互
  • service :业务逻辑层
  • web :Web 服务层
  • worker :任务调度层

在最初很长的一段时间里,我们部署了两个单体服务。一个是 API 接口来保障上游的库存查询以及调用,另一个是 Web 服务的后台管理平台。这两个单体服务很好的贴合了最初的业务迭代和发版速度,但是后来随着业务的增加附加调用量的增加,单体服务的无论是从性能和稳定性都出现了较大的波动。

意料之外,情理之中的事故惨案

2015 年 6 月 26 日晚,也是一个促销活动的前夕,库存的 Web 管理平台挂了,原因就是大量库存导入,服务器的内存不足导致机器宕机。商家、运营无法通过导表的方式去维护库存数量,在这之前已经经历过了多次横向扩容。还是出现了预料之外的流量和稳定性的问题。

而且在接下来的大促过程当中,库存的单体服务 API 接口也承受了非常大的压力。

一方面是上游调用方有很多,比如 App 端首页中的门店网关,查询商品是否有库存,是否展示。购物车加车,也会查询商品库存的数量,提单则会对库存数量进行扣减,乃至后续的订单取消同样也会调用库存接口。

另一方面大的 KA 商家通过中台对接对库存进行操作,为了尽可能的让商家门店的库存和线上平台的库存保持一致,减少线上线下库存不一致导致的超卖、少卖。中台同步间隔时间都非常短,5 分钟~10 分钟就要全量同步一次。后续随着入驻的商家增多,这个量级增长得也非常的迅速。于是我们开启了单体服务向分布式服务演进的大门。

基于 Spring Cloud Alibaba + Gateway + Nacos + RocketMQ + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

分布式架构

分布式架构的优缺点

优点

  • 可用性高
  • 可扩展性高
  • 系统容错性高
  • 业务代码可读性高
  • 维护简单

这些优点正是我们当时库存系统欠缺的,尤其是其中的可用性、系统容错性,是我们系统演进迭代的首要目标。

《分布式架构体系》中描述到,分布式架构的核心理念也是按照(功能、业务、领域等)对系统进行拆分,通过合理的拆分结构,实现各业务模块的解耦,同时通过系统级容错设计,在廉价硬件基础设施上构建起高可用、可扩展的开放技术体系。

所以我们库存系统到底要按照什么进行拆分,功能?业务?领域?在拆分之前我们一定要明确设计的目标,避免目标方向错误带来的人力、成本资源的浪费。在弄清楚目标之前,我们先了解下分布式架构的缺点,通过了解这些缺点来衡量满足我们目标的前提下,需要进行哪些方面的取舍,就如 CAP 原则一样,只能满足其中的两个,AP 或者 CP。

2)分布式架构的缺点

  • 服务多,人员对拆分后的业务模块理解要花费一些成本
  • 技术栈升级耗费人力
  • 分布式事务的保持
  • 业务模块之间的 RPC 交互损耗

库存系统的特点,高可用、高并发、强数据一致性。接下来我们就来讲一下,库存是如何从单体架构向分布式架构进行的转型。

单体架构如何向分布式架构转型

因为库存面临的最大的问题是稳定性,所以我们首先针对功能进行了拆分。

1)功能拆分

这一步是相对简单的,我们梳理出库存面向服务的业务方进行服务划分。这部分无需进行太多代码的改造,一套接口通过变更不同的 group 别名,部署到不同的集群即可。

拆分后,不同的服务应对不同的业务方,系统错误的隔离性好,不会说出现一损俱损的局面,稳定性上也有了保障。在解决了稳定性的问题后,留给我们了一些喘气的间隔,可以有时间去进行代码的优化。因为刚才也提到了,我们只是通过分布式的集群部署来解决容错性的问题,但是代码还是一套,臃肿的代码也会拖慢我们的开发上线速度。那么接下来要进行的就是,对业务代码的解耦,这块也是难度最高的。我们是如何做的呢?

2)业务拆分

业务拆分的思路是什么呢?

  • 以业务本身为导向,充分了解系统业务模型,划分业务边界;
  • 业务依赖的范围,细分功能,尽量减少功能之间的重复依赖;
  • 根据拆分功能的影响大小进行评估,拆小保大;
  • 拆分的过程中不要修改业务逻辑,不要进行拆分之外的任何优化动作(除非是bug)。

基于上述拆分的思路,库存系统又是如何划分的业务模块呢?动了哪些代码?

3)如何划分业务模块

关于业务划分,网上有很多方法论,事件风暴法、四色建模法等等,但是万法不离其宗,那就是围绕事件。以库存系统举例:库存初始化(门店 + sku 库存创建)、库存数量维护(修改现货数量、修改可售状态)、扣减业务(购物车扣减、提单扣减、订单取消扣减)、提醒业务(缺货提醒)等。每一个事件都有独立的链路轴,以及时间线可以形成闭环。

4)如何在原有模块上拆分

大多数单体架构都是面向过程的设计,domain 层充斥这个各种 DTO、VO、BO,所以在层与层的数据交互过程中,大都是经历了多次的 POJO。另外就是 Service 层充斥着和 DAO 层数据交互以及参杂了业务,而且严重违反了依赖倒置原则,整个层变得非常的沉重。这里举个例子:

  • 同层级间相互引用
  • Service 层包含了太多业务逻辑,无法保障原子性

这里截取部分代码片段作为案例,来讲述下我们在拆分业务的过程中,需要做一些什么操作。

  • 对 Service 层进行 CQS 的拆分
  • 把业务逻辑从原有的 Service 层抽离,保障 Service 方法遵循 SRP 原则
  • 新增业务聚合层(或者向六边形架构里提到的 adapter 转接口)来聚合 Service 层的方法

原始代码

@Service
public class SkuMainServiceImpl implements SkuMainService {
    private static final org.slf4j.Logger LOGGER = LoggerFactory.getLogger(SkuMainServiceImpl.class);
    @Resource
    private SkuMainDao skuMainDao;
    @Resource
    private ZkConfManagerCenterService zkConfManagerCenterService;
    @Resource
    private ProductImagesService productImagesService;//同级互相引用,未遵循依赖倒置
    @Resource
    private MqService mqServiceImpl;
    @Value("${system.group.environment}")
    private String systemGroupEnvironment;
    /**
     * 问题:service层聚合了太多业务逻辑 倒置上层方法没办法统一
     * @param skuMainInfoMQEntity
     * @throws Exception
     */
    public void editorSaveProuct(SkuMainInfoMQEntity skuMainInfoMQEntity) throws Exception {
        try {
            SkuMainBean skuMainBean = skuMainInfoMQEntity.getSkuMainBean();
            if (skuMainBean == null) {
                throw new Exception("修改参数为空!");
            }
            SkuMainBean originalSku = this.getSkuMainBeanBySkuId(skuMainBean.getId());
            if (originalSku == null) {
                throw new Exception("无效SkuId!");
            }
            SkuMainBean skuMainUpdate = updateIsWeightMark(skuMainBean);
            SkuMainBean skuMainPre = this.get(skuMainUpdate.getId());
            // 系统下架的商品 强制下架
            if (skuMainPre != null && skuMainPre.getSystemFixedStatus() != null && skuMainPre.getSystemFixedStatus().equals(SystemFixedStatusEnum.SYSTEM_FIXED_STATUS_DOWN.getCode())) {
                skuMainUpdate.setFixedStatus(FixedStatusEnum.PRODUCT_DOWN.getCode());
            }
            boolean flag = skuMainDao.editorProduct(skuMainUpdate);
            if (flag) {
                if (!zkConfManagerCenterService.isDefaultStoreStatisticsScore(skuMainBean.getOrgCode())) {
                    SkuMainBean saveSkumainBean = this.get(skuMainUpdate.getId());
                    // 防止未查到,把缓存覆盖
                    if (saveSkumainBean != null) {
                        cacheSkuMainBean(saveSkumainBean);
                    }
                    // 发送Sku修改MQ
                    sendSkuModifyMq(SkuModifyOpSourceEnum.MIX_UPDATE_SKU, originalSku, new SkuMainInfoMQEntity(skuMainUpdate));
                    ProductImagesBean productImagesBean = productImagesService.queryImagesBySkuId(skuMainUpdate.getId());
                    SkuMainInfoCheckMQEntity skuMainInfoCheckMQEntity = new SkuMainInfoCheckMQEntity();
                    skuMainInfoCheckMQEntity.setSkuMainBean(skuMainUpdate);
                    skuMainInfoCheckMQEntity.setProductImagesBean(productImagesBean);
                    mqServiceImpl.sendJosMQ(skuMainInfoCheckMQEntity, MqTypeEnum.RcsKeyWordsCheck);
                    mqServiceImpl.sendJosMQ(skuMainInfoCheckMQEntity, MqTypeEnum.SenseKeyWordsCheck);
                } else {
                    LOGGER.info("add open platform sku , not not not send mq! skuId = {}", skuMainBean.getId());
                }
            }
        } catch (Exception e) {
            LOGGER.error("修改商品信息失败.e:", e);
            throw new Exception(e);
        }
    }

CQS 和 SRP 的改造,拆解 GOD Classes

Read 服务

Write 服务

抽离到业务层 Business 层后

@Service
public class SkuMainBusinessServiceImpl implements SkuMainBusinessService {
    private static final org.slf4j.Logger LOGGER = LoggerFactory.getLogger(SkuMainBusinessServiceImpl.class);
    @Resource
    private ZkConfManagerCenterService zkConfManagerCenterService;
    @Resource
    private MqService mqService;
    @Resource
    private SkuMainReadservice skuMainReadservice;
    @Resource
    private SkuMainWriteservice skuMainWriteservice;
    @Value("${system.group.environment}")
    private String systemGroupEnvironment;
    /**
     * 问题:service层聚合了太多业务逻辑 倒置上层方法没办法统一
     * @param skuMainInfoMQEntity
     * @throws Exception
     */
    public void editorSaveProuct(SkuMainInfoMQEntity skuMainInfoMQEntity) throws Exception {
        try {
            SkuMainBean skuMainBean = skuMainInfoMQEntity.getSkuMainBean();
            if (skuMainBean == null) {
                throw new Exception("修改参数为空!");
            }
            SkuMainBean originalSku = skuMainReadservice.getSkuMainBeanBySkuId(skuMainBean.getId());
            if (originalSku == null) {
                throw new Exception("无效SkuId!");
            }
            SkuMainBean skuMainUpdate = skuMainWriteservice.updateIsWeightMark(skuMainBean);
            SkuMainBean skuMainPre = skuMainReadservice.queryDbById(skuMainUpdate.getId());
            // 系统下架的商品 强制下架
            if (skuMainPre != null && skuMainPre.getSystemFixedStatus() != null && skuMainPre.getSystemFixedStatus().equals(SystemFixedStatusEnum.SYSTEM_FIXED_STATUS_DOWN.getCode())) {
                skuMainUpdate.setFixedStatus(FixedStatusEnum.PRODUCT_DOWN.getCode());
            }
            boolean flag = skuMainWriteservice.editorProduct(skuMainUpdate);
            if (flag) {
                if (!zkConfManagerCenterService.isDefaultStoreStatisticsScore(skuMainBean.getOrgCode())) {
                    SkuMainBean saveSkumainBean = skuMainservice.queryDbById(skuMainUpdate.getId());
                    // 防止未查到,把缓存覆盖
                    if (saveSkumainBean != null) {
                        skuMainWriteservice.cacheSkuMainBean(saveSkumainBean);
                    }
                    // 发送Sku修改MQ
                    skuMainWriteservice.sendSkuModifyMq(SkuModifyOpSourceEnum.MIX_UPDATE_SKU, originalSku, new SkuMainInfoMQEntity(skuMainUpdate));
                } else {
                    LOGGER.info("add open platform sku , not not not send mq! skuId = {}", skuMainBean.getId());
                }
            }
        } catch (Exception e) {
            LOGGER.error("修改商品信息失败.e:", e);
            throw new Exception(e);
        }
    }

构建好的业务层

拆分小结

拆分到这里,业务层的划分基本就比较清晰了。而且在这个增量整合底层代码的过程中,面向过程的业务线也都梳理的比较清晰了,底层方法也都提取到了业务层收口,通过接口对外提供服务。那么接下来我们要面临的问题就是,如何对具体的读写进行拆分。

基于 CQRS 打造分布式服务

上面我们也提到了,进行了整体功能的拆分,并没有对具体的读写服务的拆分。在面向服务的场景下,功能里也是分读服务、写服务。那么我们有什么原则来指导读写服务的分离么?那就是 CQRS 的思想:命令职责查询分离,不单单指代码,同样也是适用于服务。

优先拆分读还是优先拆分写

建议从拆分读开始,因为读服务相对于写服务简单一些,而且更容易提高系统对外服务的稳定性,写服务的流程相对底层改动比较大,测试的周期也会比较长。在前期,动写服务系统出问题的概率会比较大,所以综合稳定性、扩展性来说,优先拆分读服务是一个比较好的选择。

CQRS 的思想适合所有业务场景吗?

以库存系统举例,我们就按照 CQRS 的思想复刻一版,看看会出现什么问题。

  • 每一次修改同步库存写入任务表
  • schedule 任务读取任务表
  • 把任务表的修改数据同步到 Read 服务中的 Redis 中

在这个过程中,存在两个问题:

  • 大数据量任务同步的问题:也就是 Event Bus 同步 Redis 的数据同步速度问题。
  • 延迟问题:库存要求实时性非常高,如果因为任务积压导致的延迟,会让库存陷入困境之中。大量的库存数量不对导致的超卖、超卖会瞬间击溃业务。

所以每一个架构、每一种思想都是要结合业务去分析。我们可以借鉴 CQRS 的命令查询职责分离,在面对业务系统部署的时候,不要死板的遵循固有的模式,要对现有的风格做出一定的取舍。所以,我们在应对库存业务的时候,基于 CQRS 的风格创建出了库存独有的 CQRS-StockCenter。

CQRS 的活学活用:CQRS-StockCenter

  • business 业务层写入命令
  • writeService 服务写入读服务 Redis
  • MQ 消息作为异步数据补全写入 MySQL 备份、写入流水

库存通过这套设计强依赖了 Redis 来作为库存查询、修改的中间件。保障了数据的强一致性。库存在原有的服务上,分离了读写,保障了系统的 CQRS 命令职责查询分离。

分布式事务

大家都知道事务。简单来说,事务由一组关联操作构成,A->B->C ,如果执行到C报错了,那么要回滚 B->A。

对于本地事务来说,这个相对很简单,如果你用了事务型数据库比如 MySQL,并且不涉及多个数据源的情况下,保障事务的 ACID 非常的容易。但是我们这里要提到的就是分布式事务。

系统拆分后,由于每个服务是一个独立的模块,负责一块业务,那么在整个业务轴的流程下,各个服务节点的跨系统事务回滚成为了一个难题。

业界也有一些方案,比如 JTA(Java Transaction API 即 Java 事务 API)和 JTS(Java Transaction Service 即 Java 事务服务),为 J2EE 平台提供了分布式事务服务。

但是,这种需要满足 XA(两阶段提交)的标准非常的重。而且现在的业务多样性,很多数据库比如 MongoDB,并不支持 XA 的标准分布式事务,一些流行的中间件,比如 RabbitMQ 和 Kafka 也不支持分布式事务。

image.png

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore     ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库 ECS 实例和一台目标数据库 RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
1月前
|
存储 缓存 NoSQL
分布式系统架构8:分布式缓存
本文介绍了分布式缓存的理论知识及Redis集群的应用,探讨了AP与CP的区别,Redis作为AP系统具备高性能和高可用性但不保证强一致性。文章还讲解了透明多级缓存(TMC)的概念及其优缺点,并详细分析了memcached和Redis的分布式实现方案。此外,针对缓存穿透、击穿、雪崩和污染等常见问题提供了应对策略,强调了Cache Aside模式在解决数据一致性方面的作用。最后指出,面试中关于缓存的问题多围绕Redis展开,建议深入学习相关知识点。
195 8
|
1月前
|
存储 Prometheus Cloud Native
分布式系统架构6:链路追踪
本文深入探讨了分布式系统中的链路追踪理论,涵盖追踪与跨度的概念、追踪系统的模块划分及数据收集的三种方式。链路追踪旨在解决复杂分布式系统中请求流转路径不清晰的问题,帮助快速定位故障和性能瓶颈。文中介绍了基于日志、服务探针和边车代理的数据收集方法,并简述了OpenTracing、OpenCensus和OpenTelemetry等链路追踪协议的发展历程及其特点。通过理解这些概念,可以更好地掌握开源链路追踪框架的使用。
103 41
|
1月前
|
存储 缓存 安全
分布式系统架构7:本地缓存
这是小卷关于分布式系统架构学习的第10篇文章,主要介绍本地缓存的基础理论。文章分析了引入缓存的利弊,解释了缓存对CPU和I/O压力的缓解作用,并讨论了缓存的吞吐量、命中率、淘汰策略等属性。同时,对比了几种常见的本地缓存工具(如ConcurrentHashMap、Ehcache、Guava Cache和Caffeine),详细介绍了它们的访问控制、淘汰策略及扩展功能。
84 6
|
1月前
|
存储 关系型数据库 分布式数据库
[PolarDB实操课] 01.PolarDB分布式版架构介绍
《PolarDB实操课》之“PolarDB分布式版架构介绍”由阿里云架构师王江颖主讲。课程涵盖PolarDB-X的分布式架构、典型业务场景(如实时交易、海量数据存储等)、分布式焦点问题(如业务连续性、一致性保障等)及技术架构详解。PolarDB-X基于Share-Nothing架构,支持HTAP能力,具备高可用性和容错性,适用于多种分布式改造和迁移场景。课程链接:[https://developer.aliyun.com/live/253957](https://developer.aliyun.com/live/253957)。更多内容可访问阿里云培训中心。
[PolarDB实操课] 01.PolarDB分布式版架构介绍
|
2月前
|
设计模式 存储 算法
分布式系统架构5:限流设计模式
本文是小卷关于分布式系统架构学习的第5篇,重点介绍限流器及4种常见的限流设计模式:流量计数器、滑动窗口、漏桶和令牌桶。限流旨在保护系统免受超额流量冲击,确保资源合理分配。流量计数器简单但存在边界问题;滑动窗口更精细地控制流量;漏桶平滑流量但配置复杂;令牌桶允许突发流量。此外,还简要介绍了分布式限流的概念及实现方式,强调了限流的代价与收益权衡。
102 11
|
2月前
|
设计模式 监控 Java
分布式系统架构4:容错设计模式
这是小卷对分布式系统架构学习的第4篇文章,重点介绍了三种常见的容错设计模式:断路器模式、舱壁隔离模式和重试模式。断路器模式防止服务故障蔓延,舱壁隔离模式通过资源隔离避免全局影响,重试模式提升短期故障下的调用成功率。文章还对比了这些模式的优缺点及适用场景,并解释了服务熔断与服务降级的区别。尽管技术文章阅读量不高,但小卷坚持每日更新以促进个人成长。
68 11
|
2月前
|
消息中间件 存储 安全
分布式系统架构3:服务容错
分布式系统因其复杂性,故障几乎是必然的。那么如何让系统在不可避免的故障中依然保持稳定?本文详细介绍了分布式架构中7种核心的服务容错策略,包括故障转移、快速失败、安全失败等,以及它们在实际业务场景中的应用。无论是支付场景的快速失败,还是日志采集的安全失败,每种策略都有自己的适用领域和优缺点。此外,文章还为技术面试提供了解题思路,助你在关键时刻脱颖而出。掌握这些策略,不仅能提升系统健壮性,还能让你的技术栈更上一层楼!快来深入学习,走向架构师之路吧!
76 11
|
6天前
|
NoSQL Java 中间件
【📕分布式锁通关指南 02】基于Redis实现的分布式锁
本文介绍了从单机锁到分布式锁的演变,重点探讨了使用Redis实现分布式锁的方法。分布式锁用于控制分布式系统中多个实例对共享资源的同步访问,需满足互斥性、可重入性、锁超时防死锁和锁释放正确防误删等特性。文章通过具体示例展示了如何利用Redis的`setnx`命令实现加锁,并分析了简化版分布式锁存在的问题,如锁超时和误删。为了解决这些问题,文中提出了设置锁过期时间和在解锁前验证持有锁的线程身份的优化方案。最后指出,尽管当前设计已解决部分问题,但仍存在进一步优化的空间,将在后续章节继续探讨。
413 131
【📕分布式锁通关指南 02】基于Redis实现的分布式锁
|
9天前
|
NoSQL Java Redis
Springboot使用Redis实现分布式锁
通过这些步骤和示例,您可以系统地了解如何在Spring Boot中使用Redis实现分布式锁,并在实际项目中应用。希望这些内容对您的学习和工作有所帮助。
133 83
|
5天前
|
缓存 NoSQL 搜索推荐
【📕分布式锁通关指南 03】通过Lua脚本保证redis操作的原子性
本文介绍了如何通过Lua脚本在Redis中实现分布式锁的原子性操作,避免并发问题。首先讲解了Lua脚本的基本概念及其在Redis中的使用方法,包括通过`eval`指令执行Lua脚本和通过`script load`指令缓存脚本。接着详细展示了如何用Lua脚本实现加锁、解锁及可重入锁的功能,确保同一线程可以多次获取锁而不发生死锁。最后,通过代码示例演示了如何在实际业务中调用这些Lua脚本,确保锁操作的原子性和安全性。
31 6
【📕分布式锁通关指南 03】通过Lua脚本保证redis操作的原子性