新来个阿里 P7,仅花 2 小时,撸出一个多线程永动任务,看完直接跪了,真牛逼!

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 新来个阿里 P7,仅花 2 小时,撸出一个多线程永动任务,看完直接跪了,真牛逼!


来源:楼仔

大家好,今天教大家撸一个 Java 的多线程永动任务,这个示例的原型是公司自研的多线程异步任务项目 ,我把里面涉及到多线程的代码抽离出来,然后进行一定的改造。

里面涉及的知识点非常多,特别适合有一定工作经验 的同学学习,或者可以直接拿到项目中使用。

文章结构非常简单:

1. 功能说明

做这个多线程异步任务,主要是因为我们有很多永动的异步任务,什么是永动呢?就是任务跑起来后,需要一直跑下去。

比如消息 Push 任务,因为一直有消息过来,所以需要一直去消费 DB 中的未推送消息,就需要整一个 Push 的永动异步任务。

我们的需求其实不难,简单总结一下:

  1. 能同时执行多个永动的异步任务
  2. 每个异步任务,支持开多个线程 去消费这个任务的数据;
  3. 支持永动异步任务的优雅关闭 ,即关闭后,需要把所有的数据消费完毕后,再关闭。

完成上面的需求,需要注意几个点:

  1. 每个永动任务 ,可以开一个线程去执行;
  2. 每个子任务 ,因为需要支持并发,需要用线程池控制;
  3. 永动任务的关闭,需要通知子任务的并发线程,并支持永动任务和并发子任务的优雅关闭

基于 Spring Boot + MyBatis Plus + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

2. 多线程任务示例

2.1 线程池

对于子任务,需要支持并发,如果每个并发都开一个线程,用完就关闭,对资源消耗太大,所以引入线程池:

public class TaskProcessUtil {
    // 每个任务,都有自己单独的线程池
    private static Map<String, ExecutorService> executors = new ConcurrentHashMap<>();
    // 初始化一个线程池
    private static ExecutorService init(String poolName, int poolSize) {
        return new ThreadPoolExecutor(poolSize, poolSize,
                0L, TimeUnit.MILLISECONDS,
                new LinkedBlockingQueue<Runnable>(),
                new ThreadFactoryBuilder().setNameFormat("Pool-" + poolName).setDaemon(false).build(),
                new ThreadPoolExecutor.CallerRunsPolicy());
    }
    // 获取线程池
    public static ExecutorService getOrInitExecutors(String poolName,int poolSize) {
        ExecutorService executorService = executors.get(poolName);
        if (null == executorService) {
            synchronized (TaskProcessUtil.class) {
                executorService = executors.get(poolName);
                if (null == executorService) {
                    executorService = init(poolName, poolSize);
                    executors.put(poolName, executorService);
                }
            }
        }
        return executorService;
    }
    // 回收线程资源
    public static void releaseExecutors(String poolName) {
        ExecutorService executorService = executors.remove(poolName);
        if (executorService != null) {
            executorService.shutdown();
        }
    }
}

这是一个线程池的工具类,这里初始化线程池和回收线程资源很简单,我们主要讨论获取线程池。

获取线程池可能会存在并发情况,所以需要加一个 synchronized 锁,然后锁住后,需要对 executorService 进行二次判空校验。

2.2 单个任务

为了更好讲解单个任务的实现方式,我们的任务主要就是把 Cat 的数据打印出来,Cat 定义如下:

@Data
@Service
public class Cat {
    private String catName;
    public Cat setCatName(String name) {
        this.catName = name;
        return this;
    }
}

单个任务主要包括以下功能:

  • 获取永动任务数据 :这里一般都是扫描 DB,我直接就简单用 queryData() 代替。
  • 多线程执行任务 :需要把数据拆分成 4 份,然后分别由多线程并发执行,这里可以通过线程池支持;
  • 永动任务优雅停机 :当外面通知任务需要停机,需要执行完剩余任务数据,并回收线程资源,退出任务;
  • 永动执行 :如果未收到停机命令,任务需要一直执行下去。

直接看代码:

public class ChildTask {
    private final int POOL_SIZE = 3; // 线程池大小
    private final int SPLIT_SIZE = 4; // 数据拆分大小
    private String taskName;
    // 接收jvm关闭信号,实现优雅停机
    protected volatile boolean terminal = false;
    public ChildTask(String taskName) {
        this.taskName = taskName;
    }
    // 程序执行入口
    public void doExecute() {
        int i = 0;
        while(true) {
            System.out.println(taskName + ":Cycle-" + i + "-Begin");
            // 获取数据
            List<Cat> datas = queryData();
            // 处理数据
            taskExecute(datas);
            System.out.println(taskName + ":Cycle-" + i + "-End");
            if (terminal) {
                // 只有应用关闭,才会走到这里,用于实现优雅的下线
                break;
            }
            i++;
        }
        // 回收线程池资源
        TaskProcessUtil.releaseExecutors(taskName);
    }
    // 优雅停机
    public void terminal() {
        // 关机
        terminal = true;
        System.out.println(taskName + " shut down");
    }
    // 处理数据
    private void doProcessData(List<Cat> datas, CountDownLatch latch) {
        try {
            for (Cat cat : datas) {
                System.out.println(taskName + ":" + cat.toString() + ",ThreadName:" + Thread.currentThread().getName());
                Thread.sleep(1000L);
            }
        } catch (Exception e) {
            System.out.println(e.getStackTrace());
        } finally {
            if (latch != null) {
                latch.countDown();
            }
        }
    }
    // 处理单个任务数据
    private void taskExecute(List<Cat> sourceDatas) {
        if (CollectionUtils.isEmpty(sourceDatas)) {
            return;
        }
        // 将数据拆成4份
        List<List<Cat>> splitDatas = Lists.partition(sourceDatas, SPLIT_SIZE);
        final CountDownLatch latch = new CountDownLatch(splitDatas.size());
        // 并发处理拆分的数据,共用一个线程池
        for (final List<Cat> datas : splitDatas) {
            ExecutorService executorService = TaskProcessUtil.getOrInitExecutors(taskName, POOL_SIZE);
            executorService.submit(new Runnable() {
                @Override
                public void run() {
                    doProcessData(datas, latch);
                }
            });
        }
        try {
            latch.await();
        } catch (Exception e) {
            System.out.println(e.getStackTrace());
        }
    }
    // 获取永动任务数据
    private List<Cat> queryData() {
        List<Cat> datas = new ArrayList<>();
        for (int i = 0; i < 5; i ++) {
            datas.add(new Cat().setCatName("罗小黑" + i));
        }
        return datas;
    }
}

简单解释一下:

  • queryData :用于获取数据,实际应用中其实是需要把 queryData 定为抽象方法,然后由各个任务实现自己的方法。
  • doProcessData :数据处理逻辑,实际应用中其实是需要把 doProcessData 定为抽象方法,然后由各个任务实现自己的方法。
  • taskExecute :将数据拆分成 4 份,获取该任务的线程池,并交给线程池并发执行,然后通过 latch.await() 阻塞。当这 4 份数据都执行成功后,阻塞结束,该方法才返回。
  • terminal :仅用于接受停机命令,这里该变量定义为 volatile,所以多线程内存可见;
  • doExecute :程序执行入口,封装了每个任务执行的流程,当 terminal=true 时,先执行完任务数据,然后回收线程池,最后退出。

2.3 任务入口

直接上代码:

public class LoopTask {
    private List<ChildTask> childTasks;
    public void initLoopTask() {
        childTasks = new ArrayList();
        childTasks.add(new ChildTask("childTask1"));
        childTasks.add(new ChildTask("childTask2"));
        for (final ChildTask childTask : childTasks) {
            new Thread(new Runnable() {
                @Override
                public void run() {
                    childTask.doExecute();
                }
            }).start();
        }
    }
    public void shutdownLoopTask() {
        if (!CollectionUtils.isEmpty(childTasks)) {
            for (ChildTask childTask : childTasks) {
                childTask.terminal();
            }
        }
    }
    public static void main(String args[]) throws Exception{
        LoopTask loopTask = new LoopTask();
        loopTask.initLoopTask();
        Thread.sleep(5000L);
        loopTask.shutdownLoopTask();
    }
}

每个任务都开一个单独的 Thread,这里我初始化了 2 个永动任务,分别为 childTask1 和 childTask2,然后分别执行,后面 Sleep 了 5 秒后,再关闭任务,我们可以看看是否可以按照我们的预期优雅退出。

2.4 结果分析

执行结果如下:

childTask1:Cycle-0-Begin
childTask2:Cycle-0-Begin
childTask1:Cat(catName=罗小黑0),ThreadName:Pool-childTask1
childTask1:Cat(catName=罗小黑4),ThreadName:Pool-childTask1
childTask2:Cat(catName=罗小黑4),ThreadName:Pool-childTask2
childTask2:Cat(catName=罗小黑0),ThreadName:Pool-childTask2
childTask1:Cat(catName=罗小黑1),ThreadName:Pool-childTask1
childTask2:Cat(catName=罗小黑1),ThreadName:Pool-childTask2
childTask2:Cat(catName=罗小黑2),ThreadName:Pool-childTask2
childTask1:Cat(catName=罗小黑2),ThreadName:Pool-childTask1
childTask2:Cat(catName=罗小黑3),ThreadName:Pool-childTask2
childTask1:Cat(catName=罗小黑3),ThreadName:Pool-childTask1
childTask2:Cycle-0-End
childTask2:Cycle-1-Begin
childTask1:Cycle-0-End
childTask1:Cycle-1-Begin
childTask2:Cat(catName=罗小黑0),ThreadName:Pool-childTask2
childTask2:Cat(catName=罗小黑4),ThreadName:Pool-childTask2
childTask1:Cat(catName=罗小黑4),ThreadName:Pool-childTask1
childTask1:Cat(catName=罗小黑0),ThreadName:Pool-childTask1
childTask1 shut down
childTask2 shut down
childTask2:Cat(catName=罗小黑1),ThreadName:Pool-childTask2
childTask1:Cat(catName=罗小黑1),ThreadName:Pool-childTask1
childTask1:Cat(catName=罗小黑2),ThreadName:Pool-childTask1
childTask2:Cat(catName=罗小黑2),ThreadName:Pool-childTask2
childTask1:Cat(catName=罗小黑3),ThreadName:Pool-childTask1
childTask2:Cat(catName=罗小黑3),ThreadName:Pool-childTask2
childTask1:Cycle-1-End
childTask2:Cycle-1-End

输出数据:

  • “Pool-childTask” 是线程池名称;
  • “childTask” 是任务名称;
  • “Cat(catName=罗小黑)” 是执行的结果;
  • “childTask shut down” 是关闭标记;
  • “childTask:Cycle-X-Begin” 和“childTask:Cycle-X-End” 是每一轮循环的开始和结束标记。

我们分析一下执行结果:

  • childTask1 和 childTask2 分别执行,在第一轮循环中都正常输出了 5 条罗小黑数据;
  • 第二轮执行过程中,我启动了关闭指令,这次第二轮执行没有直接停止,而是先执行完任务中的数据,再执行退出,所以完全符合我们的优雅退出结论。

2.5 源码地址

GitHub 地址:

https://github.com/lml200701158/java-study/tree/master/src/main/java/com/java/parallel/pool/ofc

基于 Spring Cloud Alibaba + Gateway + Nacos + RocketMQ + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

3. 写在最后

对于这个经典的线程池使用示例,原项目是我好友一灰 写的,技术水平阿里 P7级别,实现得也非常优雅,涉及的知识点非常多 ,非常值得大家学习。

image.png

相关文章
|
4月前
|
缓存 Java 调度
Java并发编程:深入解析线程池与Future任务
【7月更文挑战第9天】线程池和Future任务是Java并发编程中非常重要的概念。线程池通过重用线程减少了线程创建和销毁的开销,提高了资源利用率。而Future接口则提供了检查异步任务状态和获取任务结果的能力,使得异步编程更加灵活和强大。掌握这些概念,将有助于我们编写出更高效、更可靠的并发程序。
|
1月前
|
缓存 负载均衡 Java
c++写高性能的任务流线程池(万字详解!)
本文介绍了一种高性能的任务流线程池设计,涵盖多种优化机制。首先介绍了Work Steal机制,通过任务偷窃提高资源利用率。接着讨论了优先级任务,使不同优先级的任务得到合理调度。然后提出了缓存机制,通过环形缓存队列提升程序负载能力。Local Thread机制则通过预先创建线程减少创建和销毁线程的开销。Lock Free机制进一步减少了锁的竞争。容量动态调整机制根据任务负载动态调整线程数量。批量处理机制提高了任务处理效率。此外,还介绍了负载均衡、避免等待、预测优化、减少复制等策略。最后,任务组的设计便于管理和复用多任务。整体设计旨在提升线程池的性能和稳定性。
74 5
|
3月前
|
前端开发 JavaScript 大数据
React与Web Workers:开启前端多线程时代的钥匙——深入探索计算密集型任务的优化策略与最佳实践
【8月更文挑战第31天】随着Web应用复杂性的提升,单线程JavaScript已难以胜任高计算量任务。Web Workers通过多线程编程解决了这一问题,使耗时任务独立运行而不阻塞主线程。结合React的组件化与虚拟DOM优势,可将大数据处理等任务交由Web Workers完成,确保UI流畅。最佳实践包括定义清晰接口、加强错误处理及合理评估任务特性。这一结合不仅提升了用户体验,更为前端开发带来多线程时代的全新可能。
73 1
|
3月前
|
存储 监控 Java
|
4月前
|
Java Linux
Java演进问题之1:1线程模型对于I/O密集型任务如何解决
Java演进问题之1:1线程模型对于I/O密集型任务如何解决
|
3月前
|
Cloud Native Java 调度
项目环境测试问题之线程同步器会造成执行完任务的worker等待的情况如何解决
项目环境测试问题之线程同步器会造成执行完任务的worker等待的情况如何解决
|
3月前
|
Java 测试技术 PHP
父子任务使用不当线程池死锁怎么解决?
在Java多线程编程中,线程池有助于提升性能与资源利用效率,但若父子任务共用同一池,则可能诱发死锁。本文通过一个具体案例剖析此问题:在一个固定大小为2的线程池中,父任务直接调用`outerTask`,而`outerTask`再次使用同一线程池异步调用`innerTask`。理论上,任务应迅速完成,但实际上却超时未完成。经由`jstack`输出的线程调用栈分析发现,线程陷入等待状态,形成“死锁”。原因是子任务需待父任务完成,而父任务则需等待子任务执行完毕以释放线程,从而相互阻塞。此问题在测试环境中不易显现,常在生产环境下高并发时爆发,重启或扩容仅能暂时缓解。
|
4月前
|
设计模式 安全 Java
Java面试题:设计模式如单例模式、工厂模式、观察者模式等在多线程环境下线程安全问题,Java内存模型定义了线程如何与内存交互,包括原子性、可见性、有序性,并发框架提供了更高层次的并发任务处理能力
Java面试题:设计模式如单例模式、工厂模式、观察者模式等在多线程环境下线程安全问题,Java内存模型定义了线程如何与内存交互,包括原子性、可见性、有序性,并发框架提供了更高层次的并发任务处理能力
78 1
|
5月前
|
Java
java线程池执行任务(一次任务、固定间隔时间任务等)
java线程池执行任务(一次任务、固定间隔时间任务等)
298 1
|
5月前
|
存储 测试技术
【工作实践(多线程)】十个线程任务生成720w测试数据对系统进行性能测试
【工作实践(多线程)】十个线程任务生成720w测试数据对系统进行性能测试
57 0
【工作实践(多线程)】十个线程任务生成720w测试数据对系统进行性能测试