设计糟糕的分库分表是如何把系统搞挂的?

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
云数据库 RDS PostgreSQL,高可用系列 2核4GB
简介: 设计糟糕的分库分表是如何把系统搞挂的?


数据库中间件之分库分表

恭喜你,贵公司终于成长到一定规模,需要考虑高可用,甚至分库分表了。但你是否知道分库分表需要哪些要素?拆分过程是复杂的,提前计划,不要等真正开工,各种意外的工作接踵而至,以至失控。

本文意图打开数据库中间件的广度,而不考虑实现深度,至于库表垂直和水平分的概念和缘由,不做过多解释。所以此文面向的是有一定研发经验,正在寻找选型和拆分流程的专业人士。

基于 Spring Boot + MyBatis Plus + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

切入层次

以下,范围界定在JAVAMySQL中。我们首先来看一下分库分表切入的层次。

① 编码层

在同一个项目中创建多个数据源,采用ifelse的方式,直接根据条件在代码中路由。Spring中有动态切换数据源的抽象类,具体参见AbstractRoutingDataSource

如果项目不是很庞大,使用这种方式能够快速的进行分库。但缺点也是显而易见的,需要编写大量的代码,照顾到每个分支。当涉及跨库查询、聚合,需要循环计算结果并合并的场景,工作量巨大。

如果项目裂变,此类代码大多不能共用,大多通过拷贝共享。长此以往,码将不码。

② 框架层

这种情况适合公司ORM框架统一的情况,但在很多情况下不太现实。主要是修改或增强现有ORM框架的功能,在SQL中增加一些自定义原语或者hint来实现。

通过实现一些拦截器(比如MybatisInterceptor接口),增加一些自定义解析来控制数据的流向,效果虽然较好,但会改变一些现有的编程经验。

很多情况要修改框架源码,不推荐。

③ 驱动层

基于在编码层和框架层切入的各种缺点,真正的数据库中间件起码要从驱动层开始。什么意思呢?其实就是重新编写了一个JDBC的驱动,在内存中维护一个路由列表,然后将请求转发到真正的数据库连接中。

TDDLShardingJDBC等,都是在此层切入。

包括Mysql Connector/J的Failover协议 (具体指“load balancing”、“replication”、“farbic”等), 也是直接在驱动上进行修改。

请求流向一般是这样的:

④ 代理层

代理层的数据库中间件,将自己伪装成一个数据库,接受业务端的链接。然后负载业务端的请求,解析或者转发到真正的数据库中。

MySQL RouterMyCat等,都是在此层切入。

请求流向一般是这样的:

⑤ 实现层

SQL特殊版本支持,如Mysql cluster本身就支持各种特性,mariadb galera cluster支持对等双主,Greenplum支持分片等。

需要换存储,一般是解决方案,就不在讨论之列了。

技术最终都会趋于一致,选择任何一种、都是可行的。但最终选型,受开发人员熟悉度、社区活跃度、公司切合度、官方维护度、扩展性,以及公司现有的数据库产品等多方位因素影响。选择或开发一款合适的,小伙伴们会幸福很多。

基于 Spring Cloud Alibaba + Gateway + Nacos + RocketMQ + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

驱动层和代理层对比

通过以上层次描述,很明显,我们选择或开发中间件,就集中在驱动层和代理层。在这两层,能够对数据库连接和路由进行更强的控制和更细致的管理。但它们的区别也是明显的。

驱动层特点

仅支持JAVA,支持丰富的DB

驱动层中间件仅支持Java一种开发语言,但支持所有后端关系型数据库。如果你的开发语言固定,后端数据源类型丰富,推荐使用此方案。

占用较多的数据库连接

驱动层中间件要维护很多数据库连接。比如一个分了10个 的表,每个java中的Connection要维护10个数据库连接。如果项目过多,则会出现连接爆炸(我们算一下,如果每个项目6个实例,连接池中minIdle等于5,3个项目的连接总数是 10*6*5*3 = 900 个)。像Postgres这种每个连接对应一个进程的数据库,压力会很大。

数据聚合在业务实例执行

数据聚合,比如countsum等,是通过多次查询,然后在业务实例的内存中进行聚合。

路由表存在于业务方实例内存中,通过轮询或者被动通知的途径更新路由表即可。

集中式管理

所有集群的配置管理都集中在一个地方,运维负担小,DBA即可完成相关操作。

典型实现

代理层特点

异构支持,DB支持有限

代理层中间件正好相反。仅支持一种后端关系型数据库,但支持多种开发语言。如果你的系统是异构的,并且都有同样的SLA要求,则推荐使用此方案。

运维负担大

代理层需要维护数据库连接数量有限(MySQL Router那种粘性连接除外)。但作为一个独立的服务,既要考虑单独部署,又要考虑高可用,会增加很多额外节点,更别提用了影子节点的公司了。另外,代理层是请求唯一的入口,稳定性要求极高,一旦有高耗内存的聚合查询把节点搞崩溃了,都是灾难性的事故。

典型实现

共同点

篇幅有限,不做过多讨论。访问各中间件宣传页面,能够看到长长的Feature列表,也就是白名单;也能看到长长的限制列表,也就是黑名单。限定了你怎么玩,在增强了分布式能力后,分库分表本身就是一个阉割的数据库。

使用限制

确保数据均衡 拆分数据库的数据尽量均匀,比如按省份分user库不均匀,按userid取模会比较均匀不用深分页 不带切分键的深分页,会取出所有库所取页数之前的所有数据在内存排序计算。容易造成内存溢出。减少子查询 子查询会造成SQL解析紊乱,解析错误的情况,尽量减少SQL的子查询。事务最小原则 尽量缩小单机事务涉及的库范围,即尽可能减少夸库操作,将同类操作的库/表分在一起数据均衡原则 拆分数据库的数据尽量均匀,比如按省份分user库不均匀,按userid取模会比较均匀特殊函数 distinct、having、union、in、or等,一般不被支持。或者被支持,使用之后会增加风险,需要改造。

产品

建议聚焦在MyCatShardingJDBC上。另外,还有大量其他的中间件,不熟悉建议不要妄动。数据库中间件不好维护,你会发现大量半死不活的项目。

以下列表,排名不分先后,有几个是只有HA功能,没有拆分功能的:

Atlas、Kingshard、DBProxy、mysql router、MaxScale、58 Oceanus、ArkProxy、Ctrip DAL、Tsharding、Youtube vitess、网易DDB、Heisenberg、proxysql、Mango、DDAL、Datahekr、MTAtlas、MTDDL、Zebra、Cobar、Cobar

汗、几乎每个大厂都有自己的数据库中间件(还发现了几个喜欢拿开源组件加公司前缀作为产品的),只不过不给咱用罢了。

流程解决方案

无论是采用哪个层面切入进行分库分表,都面临以下工作过程。

信息收集

统计影响的业务和项目

项目范围越大,分库难度越高。有时候,一句复杂的SQL能够涉及四五个业务方,这种SQL都是需要重点关注的。

确定分库分表的规模,是只分其中的几张表,还是全部涉及。分的越多,工作量越大,几乎是线性的。

还有一些项目是牵一发动全身的。举个例子,下面这个过程,影响的链路就不仅是分库这么简单了。

确定参与人员

除了分库分表组件的技术支持人员,最应该参与的是对系统、对现有代码最熟悉的几个人。只有他们能够确定哪些SQL该废弃掉、SQL的影响面等。

确定分库分表策略

确定分库分表的维度和切分键。切分键(就是路由数据的column)一旦确定,是不允许修改的,所以在前期架构设计上,应该首先将其确立下来,才能进行后续的工作;数据维度多意味着有不同的切分键,达到不同条件查询的效果。这涉及到数据的冗余(多写、数据同步),会更加复杂。

前期准备

数据规整

库表结构不满足需求,需要提前规整。比如,切分键的字段名称不同或者类型各异。在实施分库分表策略时,这些个性会造成策略过大不好维护。

扫描所有SQL

将项目中所有的SQL扫描出来,逐个判断是否能够按照切分键正常运行。在判断过程中肯定会有大量不合规的SQL,则都需要给出改造方案,这是主要的工作量之一。

验证工具支持

直接在原有项目上进行改动和验证是可行的,但会遇到诸多问题,主要是效率太低。我倾向于首先设计一些验证工具,输入要验证的SQL或者列表,然后打印路由信息和结果进行判断。

技术准备

建议以下提到的各个点,都找一个例子体验一下,然后根据自己的团队预估难度。

以下:中间件所有不支持的SQL类型 整理容易造成崩溃的注意事项 不支持的SQL给出处理方式 考虑一个通用的主键生成器 考虑没有切分键的SQL如何处理 考虑定时任务等扫全库的如何进行遍历 考虑跨库跨表查询如何改造 准备一些工具集

实施阶段

数据迁移

分库分表会重新影响数据的分布,无论是全量还是增量,都会涉及到数据迁移,所以Databus是必要的。

一种理想的状态是所有的增删改都是消息,可以通过订阅MQ进行双写。

但一般情况下,仍然需要去模拟这个状态,比如使用Canal组件。

怎么保证数据安全的切换,我们分其他章节进行讨论。

充足的测试

分库分表必须经过充足的测试,每一句SQL都要经过严格的验证。如果有单元测试或者自动化测试工具,完全的覆盖是必要的。一旦有数据进行了错误的路由,尤其是增删改,将会创造大量的麻烦。

在测试阶段,将验证过程输出到单独的日志文件,充足测试后review日志文件是否有错误的数据流向。

SQL复验

强烈建议统一进行一次SQL复验。主要是根据功能描述,确定SQL的正确性,也就是通常说的review。

演练

在非线上环境多次对方案进行演练,确保万无一失。

制定新的SQL规范

分库分表以后,项目中的SQL就加了枷锁,不能够随意书写了。很多平常支持的操作,在拆分环境下就可能运行不了了。所以在上线前,涉及的SQL都应该有一个确认过程,即使已经经过了充足的测试。

题外话

没有支持的活别接,干不成。

分库分表是战略性的技术方案,很多情况无法回退或者回退方案复杂。如果要拆分的库表涉及多个业务方,公司技术人员复杂,CTO要亲自挂帅进行协调,并有专业仔细的架构师进行监督。没有授权的协调人员会陷入尴尬的境地,导致流程失控项目难产。

真正经历过的人,会知道它的痛!

image.png

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
相关文章
|
4月前
|
数据采集 人工智能 安全
动态IP代理与静态IP代理的深度解析及国内服务评估
动态IP代理与静态IP代理在技术原理、性能表现及应用场景上各有千秋。动态IP通过IP池轮换实现高频短时访问,适合预算有限的企业,成本低、效率高;静态IP采用固定分配模式,连接稳定且安全性强,适配长期会话需求。国内服务商分三大梯队,提供多样化方案。选型需综合业务需求、安全要求与成本预算,未来技术发展将推动代理服务更高效、可信。企业应根据解析评估,选择适配方案以提升竞争力。
249 0
|
9月前
|
搜索推荐 测试技术 API
探秘电商API:从测试到应用的深度解析与实战指南
电商API是电子商务背后的隐形引擎,支撑着从商品搜索、购物车更新到支付处理等各个环节的顺畅运行。它通过定义良好的接口,实现不同系统间的数据交互与功能集成,确保订单、库存和物流等信息的实时同步。RESTful、GraphQL和WebSocket等类型的API各自适用于不同的应用场景,满足多样化的需求。在测试方面,使用Postman、SoapUI和jMeter等工具进行全面的功能、性能和安全测试,确保API的稳定性和可靠性。未来,随着人工智能、大数据和物联网技术的发展,电商API将进一步智能化和标准化,为用户提供更个性化的购物体验,并推动电商行业的持续创新与进步。
353 5
|
应用服务中间件 Linux nginx
FFmpeg学习笔记(一):实现rtsp推流rtmp以及ffplay完成拉流操作
这篇博客介绍了如何使用FFmpeg实现RTSP推流到RTMP服务器,并使用ffplay进行拉流操作,包括在Windows和Linux系统下的命令示例,以及如何通过HTML页面显示视频流。
2700 0
|
XML JSON 安全
对比HTTP与WebSocket
对比HTTP与WebSocket
1094 0
|
存储 消息中间件 弹性计算
统一观测丨借助 Prometheus 监控 ClickHouse 数据库
统一观测丨借助 Prometheus 监控 ClickHouse 数据库
1845 103
统一观测丨借助 Prometheus 监控 ClickHouse 数据库
|
Shell Python Windows
通过Python实现win11环境下FTP的上传与下载
通过Python实现win11环境下FTP的上传与下载
275 0
|
XML 安全 网络安全
SSRF(服务器端请求伪造)
SSRF(服务器端请求伪造)攻击,如何进行内网穿透
262 1
|
Unix 编译器 C语言
Hello World!—— 属于我们的第一个C语言程序
C语言最早是由贝尔实验室的Dennis Ritchie为了UNIX的辅助开发而编写的,它是在B语言的基础上开发出来的。尽管C语言不是专门针对UNIX操作系统或机器编写的,但它与UNIX系统的关系十分紧密。由于它的硬件无关性和可移植性,使C语言逐渐成为世界上使用最广泛计算机语言。 为了进一步规范C语言的硬件无关性,1987年,美国国家标准协会(ANSI)根据C语言问世以来各种版本对C语言的发展和扩充,制定了新的标准,称为ANSI C。ANSI C语言比原来的标准C语言有了很大的发展。目前流行的C语言编译系统都是以它为基础的。
209 0
Hello World!—— 属于我们的第一个C语言程序
|
编译器 C语言
C语言extern使用
extern关键字
158 0
C语言extern使用