通过实践快速上手python

简介: 如何快速通过实践上手python技术

互联网的数据爆炸式的增长,而利用 Python 爬虫我们可以获取大量有价值的数据。这些数据可以有很多用途,比如:
1.爬取数据,进行市场调研和商业分析
爬取知乎优质答案,筛选各话题下最优质的内容; 抓取房产网站买卖信息,分析房价变化趋势、做不同区域的房价分析;爬取招聘网站职位信息,分析各行业人才需求情况及薪资水平。
2.作为机器学习、数据挖掘的原始数据
比如你要做一个推荐系统,那么你可以去爬取更多维度的数据,做出更好的模型。
3.爬取优质的资源:图片、文本、视频
爬取商品(店铺)评论以及各种图片网站,获得图片资源以及评论文本数据。掌握正确的方法,在短时间内做到能够爬取主流网站的数据,其实非常容易实现。
Python中爬虫有很多的库可以选择:urllib、requests、bs4、scrapy、pyspider 等,建议你从requests+Xpath 开始,requests 负责连接网站,返回网页,Xpath 用于解析网页,便于抽取数据。pythond的学习方式已经有很大大神分享过,但是爬虫最重要的步骤就是实践,只有实战经验才能体现学到了什么程度。比如这里我们requests来爬取豆瓣一个话题的短评数据,爬取过程中应对特殊网站的反爬虫措施是我们必须要学会的,如豆瓣这种限制ip比较的严的网,我们可以通过添加优质隧道代理去解决。代理的选择比较广泛,这里我们直接使用由亿牛云提供的爬虫加强版进行实践,添加代理ip爬取过程如下:


    import requests
    import random

    # 要访问的目标页面
    targetUrl = "https://www.douban.com/"

    # 要访问的目标HTTPS页面
    # targetUrl = "https://www.douban.com/"

    # 代理服务器(产品官网 www.16yun.cn)
    proxyHost = "t.16yun.cn"
    proxyPort = "31111"

    # 代理验证信息
    proxyUser = "ETFDJY"
    proxyPass = "5478987"

    proxyMeta = "http://%(user)s:%(pass)s@%(host)s:%(port)s" % {
        "host" : proxyHost,
        "port" : proxyPort,
        "user" : proxyUser,
        "pass" : proxyPass,
    }

    # 设置 http和https访问都是用HTTP代理
    proxies = {
        "http"  : proxyMeta,
        "https" : proxyMeta,
    }


    #  设置IP切换头
    tunnel = random.randint(1,10000)
    headers = {"Proxy-Tunnel": str(tunnel)}



    resp = requests.get(targetUrl, proxies=proxies, headers=headers)

    print resp.status_code
    print resp.text
相关文章
|
2月前
|
机器学习/深度学习 算法 数据挖掘
线性回归模型的原理、实现及应用,特别是在 Python 中的实践
本文深入探讨了线性回归模型的原理、实现及应用,特别是在 Python 中的实践。线性回归假设因变量与自变量间存在线性关系,通过建立线性方程预测未知数据。文章介绍了模型的基本原理、实现步骤、Python 常用库(如 Scikit-learn 和 Statsmodels)、参数解释、优缺点及扩展应用,强调了其在数据分析中的重要性和局限性。
71 3
|
2月前
|
Python
深入理解Python装饰器:从入门到实践####
本文旨在通过简明扼要的方式,为读者揭开Python装饰器的神秘面纱,从基本概念、工作原理到实际应用场景进行全面解析。不同于常规的摘要仅概述内容概要,本文将直接以一段精炼代码示例开篇,展示装饰器如何优雅地增强函数功能,激发读者探索兴趣,随后深入探讨其背后的机制与高级用法。 ####
58 11
|
2月前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
25天前
|
数据可视化 算法 数据挖掘
Python量化投资实践:基于蒙特卡洛模拟的投资组合风险建模与分析
蒙特卡洛模拟是一种利用重复随机抽样解决确定性问题的计算方法,广泛应用于金融领域的不确定性建模和风险评估。本文介绍如何使用Python和EODHD API获取历史交易数据,通过模拟生成未来价格路径,分析投资风险与收益,包括VaR和CVaR计算,以辅助投资者制定合理决策。
69 15
|
1月前
|
测试技术 开发者 Python
探索Python中的装饰器:从入门到实践
装饰器,在Python中是一块强大的语法糖,它允许我们在不修改原函数代码的情况下增加额外的功能。本文将通过简单易懂的语言和实例,带你一步步了解装饰器的基本概念、使用方法以及如何自定义装饰器。我们还将探讨装饰器在实战中的应用,让你能够在实际编程中灵活运用这一技术。
39 7
|
1月前
|
存储 缓存 Python
Python中的装饰器深度解析与实践
在Python的世界里,装饰器如同一位神秘的魔法师,它拥有改变函数行为的能力。本文将揭开装饰器的神秘面纱,通过直观的代码示例,引导你理解其工作原理,并掌握如何在实际项目中灵活运用这一强大的工具。从基础到进阶,我们将一起探索装饰器的魅力所在。
|
1月前
|
开发者 Python
Python中的装饰器:从入门到实践
本文将深入探讨Python的装饰器,这一强大工具允许开发者在不修改现有函数代码的情况下增加额外的功能。我们将通过实例学习如何创建和应用装饰器,并探索它们背后的原理和高级用法。
44 5
|
2月前
|
机器学习/深度学习 人工智能 数据可视化
使用Python进行数据可视化:探索与实践
在数字时代的浪潮中,数据可视化成为了沟通复杂信息和洞察数据背后故事的重要工具。本文将引导读者通过Python这一强大的编程语言,利用其丰富的库函数,轻松入门并掌握数据可视化的基础技能。我们将从简单的图表创建开始,逐步深入到交互式图表的制作,最终实现复杂数据的动态呈现。无论你是数据分析新手,还是希望提升报告吸引力的专业人士,这篇文章都将是你的理想指南。
59 9
|
2月前
|
数据采集 XML 存储
构建高效的Python网络爬虫:从入门到实践
本文旨在通过深入浅出的方式,引导读者从零开始构建一个高效的Python网络爬虫。我们将探索爬虫的基本原理、核心组件以及如何利用Python的强大库进行数据抓取和处理。文章不仅提供理论指导,还结合实战案例,让读者能够快速掌握爬虫技术,并应用于实际项目中。无论你是编程新手还是有一定基础的开发者,都能在这篇文章中找到有价值的内容。
|
2月前
|
设计模式 缓存 开发者
Python中的装饰器:从入门到实践####
本文深入探讨了Python中强大的元编程工具——装饰器,它能够以简洁优雅的方式扩展函数或方法的功能。通过具体实例和逐步解析,文章不仅介绍了装饰器的基本原理、常见用法及高级应用,还揭示了其背后的设计理念与实现机制,旨在帮助读者从理论到实战全面掌握这一技术,提升代码的可读性、可维护性和复用性。 ####