《Java数据结构入门》顺序表详解

简介: 《Java数据结构入门》顺序表详解

顺序表介绍:

顺序表是用一段物理地址连续的存储单元依次存储数据元素的线性结构,一般情况下采用数组存储。在数组上完成数据的增删查改。

🍑顺序表一般可以分为:

  1. 1.静态顺序表:使用定长数组存储元素。(本篇主要围绕静态顺序表展开)
  2. 2.动态顺序表:使用动态开辟的数组存储。


顺序表的手动实现

📝本文将创建两个Java文件:MyArraysList.java用于顺序表的实现,Test.java用于顺序表的各个接口的测试


顺序表功能接口概览

import java.util.Arrays;
public class MyArraysList {
    private int[] elem;
    private int usedSize; // 默认值是0
    private static final int DEFAULT_SIZE = 4; // 定义为常量,更加安全
    // 初始化顺序表
    public MyArraysList() {
        this.elem = new int[4];
    }
    // 对顺序表进行扩容
    public void expand() {}
    //判断当前顺序表是否为空
    public boolean isempty() {}
    // 判断当前顺序表是不是满了
    public boolean isFull() {}
    // 打印顺序表
    public void display() {}
    // 新增元素,默认在数组最后新增
    public void add(int data) {}
    // 新增元素,在数组最前面新增
    public void addHead(int data){}
    // 在 pos 位置新增元素
    public void addPos(int pos, int data) {}
    // 删除表头元素
    public void removeHead() {}
    // 删除表尾元素
    public void removeTail() {}
    // 指定下标元素的删除
    public void removePos(int pos) {}
    //删除第一次出现的关键字key
    public void remove(int toRemove) {}
    // 判定是否包含某个元素
    public boolean contains(int toFind) { return true; }
    // 查找某个元素对应的位置
    public int indexOf(int toFind) { return -1; }
    // 获取 pos 位置的元素
    public int getPos(int pos) { return -1; }
    // 给 pos 位置的元素设为 value
    public void setPos(int pos, int value) {}
    // 获取顺序表长度
    public int size() { return 0; }
    // 清空顺序表
    public void clear() {}
}

基本功能的实现

🌰对顺序表进行扩容

// 对顺序表进行扩容
    public void expand() {
        this.elem = Arrays.copyOf(this.elem, this.usedSize * 2);
        System.out.println("已经成功扩容至原来的两倍"); // 给用户提醒
    }

🌰判断顺序表是否为空 

     /**
     * 判断当前顺序表是否为空
     * @return true->空的,false->还没空
     */
    public boolean isempty() {
        if (this.usedSize == 0) {
            return true;
        }
        else return false;
    }

🌰判断顺序表是否已满

    /**
     * 判断当前顺序表是不是满了
     * @return true->满了,false->还没满
     */
    public boolean isFull() {
        if (this.usedSize == this.elem.length) return true;
        else return false;
    }

🌰打印顺序表

// 打印顺序表
// 打印的第一种方式
    public void display() {
        for (int i = 0; i < this.elem.length; i++) {
            System.out.print(this.elem[i] + " ");
        }
        System.out.println();
    }
// 打印的第二种方式,用Arrays.toString直接打印
    public void display() {
       System.out.println(Arrays.toString(this.elem));
    }

🌰获取顺序表的有效长度

 // 获取顺序表的有效长度
public int size() {
    return this.usedSize;
}

🌰清空顺序表

 // 清空顺序表
    public void clear() {
        for (int i = 0; i < this.usedSize; i++) {
            this.elem[i] = 0;
        }
        this.usedSize = 0; // 注意有效数组长度也要清零
    }

四大功能

一、增加数据

🌰头插

 // 新增元素,在数组最前面新增
    public void addHead(int data) {
        if (isFull()) {
            System.out.println("数组满了,需要扩容");
            expand();
        }
        else {
            // 从usedSize下标开始,不会数组越界(此时的elem.length > usedSize)
            for (int i = this.usedSize; i > 0; --i) {
                this.elem[i] = this.elem[i - 1]; // 从后往前挪动数据,为的是给顺序表的表头腾出来
            }
            this.elem[0] = data; // 在顺序表开头插入
            this.usedSize++;    // 数组有效长度加一
        }

🌰尾插

//在数组最后新增
    public void addTail(int data) {
        if (isFull()) {
            System.out.println("数组满了需要扩容");
            expand();
        }
        else this.elem[this.usedSize++] = data;
    }

🌰指定下标插入

  1. 1.判断pos位置是否合法(在顺序表中,数据是连续的,中间不能有空缺)
  2. 2. 判断顺序表是否满了,如果满了,需要扩容
  3. 3. 插入数据(可能需要挪动元素)
// 在 pos 位置新增元素
    public void addPos(int pos, int data) {
        if (pos < 0 || pos > usedSize) {
            System.out.println("pos位置不合法"); return;
        }
        if (isFull()) {
            System.out.println("数组满了需要扩容");
            expand();
        }
        else {
            // 如果插入位置在顺序表的中间,要注意挪动元素,从后向前挪动,这样不会造成元素值的覆盖
            for (int i = this.usedSize - 1; i >= pos; --i) {
                this.elem[i + 1] = this.elem[i];
            }
            this.elem[pos] = data; // 挪动完毕,可以赋值插入
            this.usedSize++;      // 当前元素数加一
        }
    }

二、删除数据

🌰头删

 // 删除表头元素
    public void removeHead() {
        if (isempty()) {
            System.out.println("顺序表为空,删除不合法");
            return;
        }
        // 从第一个元素开始,用后面元素的值覆盖掉前面的值,遍历整个数组就相当于把第一个元素用覆盖的方式抹去了
        for (int i = 1; i < this.usedSize; i++) {
            this.elem[i - 1] = this.elem[i];
        }
        this.elem[this.usedSize - 1] = 0; // 现在的最后一个元素是原来的倒数第二个元素, 所以原来的最后一个有效元素要置0
        this.usedSize--; // 不要忘记改变有效数组的长度
    }

🌰尾删

    // 删除表尾元素
    public void removeTail() {
        if (isempty()) {
            System.out.println("顺序表为空,删除不合法");
            return;
        }
        this.elem[this.usedSize - 1] = 0; // 直接将最后一个元素置0就完成了尾删
        this.usedSize--; // 不要忘记改变有效数组的长度
    }

🌰指定下标元素的删除

 // 指定下标元素的删除
    public void removePos(int pos) {
        if (isempty()) {
            System.out.println("顺序表为空,删除不合法");
            return;
        }
        if (pos < 0 || pos >= this.usedSize) {
            System.out.println("pos下标不合法");
        }
        else {
            for (int i = pos; i < this.usedSize - 1; ++i) {
                this.elem[i] = this.elem[i + 1]; // 从要删除的下标开始,用后边元素的值覆盖掉前面的值,就完成了删除
            }
            this.elem[this.usedSize - 1] = 0; // 要完整的删除,将挪动的最后一个元素的原本位置 置空
            this.usedSize--;// 删除后不要忘记更改顺序表的有效长度
        }
    }

🌰删除首次出现的指定元素

 //删除第一次出现的关键字key
    public void removeKey(int toRemove) {
        if (isempty()) {
            System.out.println("顺序表为空,删除不合法");
            return;
        }
        for (int i = 0; i < this.usedSize; i++) {
            if (this.elem[i] == toRemove) {
                // 注意是this.usedSize - 1,将此时 i 之后的元素统一往前搬移一个位置
                for (int j = i; j < this.usedSize - 1; ++j) {
                    this.elem[j] = this.elem[j + 1];
                }
                this.elem[this.usedSize - 1] = 0; // 要完整的删除,将挪动的最后一个元素的原本位置 置空
                this.usedSize--; // 删除后不要忘记更改顺序表的有效长度
                return; // 只删除第一次出现的
            }
        }
    }

三、查找数据

🌰获取指定位置的元素

  1. 1.考虑要获取的位置是否合法
  2. 2.返回指定位置的元素
 // 获取 pos 位置的元素
    public int getPos(int pos) {
        if (pos < 0 || pos >= this.usedSize) { // 注意这里当pos==this.usedSize也是不合法的,因为此时的pos下标所要获取的是顺序表中第usedSize+1个元素
            System.out.println("pos的位置不合法");
            return -1;
        }
        else {
            return this.elem[pos];
        }
    }

🌰获取指定元素所在的位置

 // 查找某个元素所对应顺序表中的位置
    public int indexOf(int toFind) {
        for (int i = 0; i < this.usedSize; i++) {
            if (this.elem[i] == toFind) {
                return i;
            }
        }
        System.out.println("在数组中没有找到该元素");
        return -1;
    }

🌰查找表中是否包含某个元素

 /**
 * /判定是否包含某个元素
 * @param toFind 要查找的元素
 * @return true->包含, false->不包含
 */
    public boolean contains(int toFind) {
        for (int i = 0; i < this.usedSize; i++) {
            if (this.elem[i] == toFind)  return true;
        }
        return false;
    }

四、修改数据

🍑首先考虑修改的位置是否合法

🍑考虑特殊情况

// 给 pos 位置的元素设为 value
    public void setPos(int pos, int value) {
        if (pos < 0 || pos > this.usedSize) {
            System.out.println("pos位置不合法");
            return;
        }
        if (pos == this.usedSize) { // 对这种情况要单独处理,此时相等于增加元素
            this.elem[pos] = value;
            this.usedSize++;
        }
        else {
            this.elem[pos] = value;
        }
    }

总代码

📝MyArraysList.java

import java.util.Arrays;
public class MyArraysList {
    private int[] elem;
    private int usedSize; // 默认值是0
    private static final int DEFAULT_SIZE = 4; // 定义为常量,更加安全
    // 初始化顺序表
    public MyArraysList() {
        this.elem = new int[4];
    }
    // 对顺序表进行扩容
    public void expand() {
        this.elem = Arrays.copyOf(this.elem, this.usedSize * 2);
        System.out.println("已经成功扩容至原来的两倍"); // 给用户提醒
    }
    /**
     * 判断当前顺序表是否为空
     * @return true->空的,false->还没空
     */
    public boolean isempty() {
        if (this.usedSize == 0) {
            return true;
        }
        else return false;
    }
    /**
     * 判断当前顺序表是不是满了
     * @return true->满了,false->还没满
     */
    public boolean isFull() {
        if (this.usedSize == this.elem.length) return true;
        else return false;
    }
    // 打印顺序表
    public void display() {
        for (int i = 0; i < this.elem.length; i++) {
            System.out.print(this.elem[i] + " ");
        }
        // System.out.println(Arrays.toString(this.elem));或者用Arrays.toString打印也行
        System.out.println();
    }
    // 新增元素,默认在数组最后新增
    public void addTail(int data) {
        if (isFull()) {
            System.out.println("数组满了需要扩容");
            expand();
        }
        else this.elem[this.usedSize++] = data;
    }
    // 新增元素,在数组最前面新增
    public void addHead(int data) {
        if (isFull()) {
            System.out.println("数组满了,需要扩容");
            expand();
        }
        else {
            // 从usedSize下标开始,不会数组越界(此时的elem.length > usedSize)
            for (int i = this.usedSize; i > 0; --i) {
                this.elem[i] = this.elem[i - 1]; // 从后往前挪动数据,为的是给顺序表的表头腾出来
            }
            this.elem[0] = data; // 在顺序表开头插入
            this.usedSize++;    // 数组有效长度加一
        }
    }
    // 1、判断pos位置是否合法(在顺序表中,数据是连续的,中间不能有空缺)
    // 2、判断顺序表是否满了,如果满了,需要扩容
    // 3、插入数据(可能需要挪作元素)
    // 在 pos 位置新增元素
    public void addPos(int pos, int data) {
        if (pos < 0 || pos > usedSize) {
            System.out.println("pos位置不合法"); return;
        }
        if (isFull()) {
            System.out.println("数组满了需要扩容");
            expand();
        }
        else {
            // 如果插入位置在顺序表的中间,要注意挪动元素,从后向前挪动,这样不会造成元素值的覆盖
            for (int i = this.usedSize - 1; i >= pos; --i) {
                this.elem[i + 1] = this.elem[i];
            }
            this.elem[pos] = data; // 挪动完毕,可以赋值插入
            this.usedSize++;      // 当前元素数加一
        }
    }
    // 删除表头元素
    public void removeHead() {
        if (isempty()) {
            System.out.println("顺序表为空,删除不合法");
            return;
        }
        // 从第一个元素开始,用后面元素的值覆盖掉前面的值,遍历整个数组就相当于把第一个元素用覆盖的方式抹去了
        for (int i = 1; i < this.usedSize; i++) {
            this.elem[i - 1] = this.elem[i];
        }
        this.elem[this.usedSize - 1] = 0; // 现在的最后一个元素是原来的倒数第二个元素, 所以原来的最后一个有效元素要置0
        this.usedSize--; // 不要忘记改变有效数组的长度
    }
    // 删除表尾元素
    public void removeTail() {
        if (isempty()) {
            System.out.println("顺序表为空,删除不合法");
            return;
        }
        this.elem[this.usedSize - 1] = 0; // 直接将最后一个元素置0就完成了尾删
        this.usedSize--; // 不要忘记改变有效数组的长度
    }
    // 指定下标元素的删除
    public void removePos(int pos) {
        if (isempty()) {
            System.out.println("顺序表为空,删除不合法");
            return;
        }
        if (pos < 0 || pos >= this.usedSize) {
            System.out.println("pos下标不合法");
        }
        else {
            for (int i = pos; i < this.usedSize - 1; ++i) {
                this.elem[i] = this.elem[i + 1]; // 从要删除的下标开始,用后边元素的值覆盖掉前面的值,就完成了删除
            }
            this.elem[this.usedSize - 1] = 0; // 要完整的删除,将挪动的最后一个元素的原本位置 置空
            this.usedSize--;// 删除后不要忘记更改顺序表的有效长度
        }
    }
    //删除第一次出现的关键字key
    public void removeKey(int toRemove) {
        if (isempty()) {
            System.out.println("顺序表为空,删除不合法");
            return;
        }
        for (int i = 0; i < this.usedSize; i++) {
            if (this.elem[i] == toRemove) {
                // 注意是this.usedSize - 1,将此时 i 之后的元素统一往前搬移一个位置
                for (int j = i; j < this.usedSize - 1; ++j) {
                    this.elem[j] = this.elem[j + 1];
                }
                this.elem[this.usedSize - 1] = 0; // 要完整的删除,将挪动的最后一个元素的原本位置 置空
                this.usedSize--; // 删除后不要忘记更改顺序表的有效长度
                return; // 只删除第一次出现的
            }
        }
    }
    /**
     * /判定是否包含某个元素
     * @param toFind 要查找的元素
     * @return true->包含, false->不包含
     */
    public boolean contains(int toFind) {
        for (int i = 0; i < this.usedSize; i++) {
            if (this.elem[i] == toFind)  return true;
        }
        return false;
    }
    // 查找某个元素对应的位置
    public int indexOf(int toFind) {
        for (int i = 0; i < this.usedSize; i++) {
            if (this.elem[i] == toFind) {
                return i;
            }
        }
        System.out.println("在数组中没有找到该元素");
        return -1;
    }
    // 获取 pos 位置的元素
    public int getPos(int pos) {
        if (pos < 0 || pos >= this.usedSize) {
            System.out.println("pos的位置不合法");
            return -1;
        }
        else {
            return this.elem[pos];
        }
    }
    // 给 pos 位置的元素设为 value
    public void setPos(int pos, int value) {
        if (pos < 0 || pos > this.usedSize) {
            System.out.println("pos位置不合法");
            return;
        }
        if (pos == this.usedSize) { // 对这种情况要单独处理,此时相等于增加元素
            this.elem[pos] = value;
            this.usedSize++;
        }
        else {
            this.elem[pos] = value;
        }
    }
    // 获取顺序表长度
    public int size() {
        return this.usedSize;
    }
    // 清空顺序表
    public void clear() {
        for (int i = 0; i < this.usedSize; i++) {
            this.elem[i] = 0;
        }
        this.usedSize = 0; // 注意有效数组长度也要清零
    }
}

🏀测试结果


af065f2d0d4b4217a187e9add3ea15db.png

好了,今天的文章就到这里了,感谢大家的支持🥰,下篇见😁

d936efdb7df741b1b3aceffead5177fb.jpg

目录
打赏
0
1
0
0
11
分享
相关文章
|
2月前
|
【Java并发】【线程池】带你从0-1入门线程池
欢迎来到我的技术博客!我是一名热爱编程的开发者,梦想是编写高端CRUD应用。2025年我正在沉淀中,博客更新速度加快,期待与你一起成长。 线程池是一种复用线程资源的机制,通过预先创建一定数量的线程并管理其生命周期,避免频繁创建/销毁线程带来的性能开销。它解决了线程创建成本高、资源耗尽风险、响应速度慢和任务执行缺乏管理等问题。
178 60
【Java并发】【线程池】带你从0-1入门线程池
|
24天前
|
【Java并发】【synchronized】适合初学者体质入门的synchronized
欢迎来到我的Java线程同步入门指南!我不是外包员工,梦想是写高端CRUD。2025年我正在沉淀中,博客更新速度加快,欢迎点赞、收藏、关注。 本文介绍Java中的`synchronized`关键字,适合初学者。`synchronized`用于确保多个线程访问共享资源时不会发生冲突,避免竞态条件、保证内存可见性、防止原子性破坏及协调多线程有序访问。
54 8
【Java并发】【synchronized】适合初学者体质入门的synchronized
|
25天前
|
《从头开始学java,一天一个知识点》之:数组入门:一维数组的定义与遍历
**你是否也经历过这些崩溃瞬间?** - 看了三天教程,连`i++`和`++i`的区别都说不清 - 面试时被追问&quot;`a==b`和`equals()`的区别&quot;,大脑突然空白 - 写出的代码总是莫名报NPE,却不知道问题出在哪个运算符 这个系列就是为你打造的Java「速效救心丸」!我们承诺:每天1分钟,地铁通勤、午休间隙即可完成学习;直击痛点,只讲高频考点和实际开发中的「坑位」;拒绝臃肿,没有冗长概念堆砌,每篇都有可运行的代码标本。明日预告:《多维数组与常见操作》。 通过实例讲解数组的核心认知、趣味场景应用、企业级开发规范及优化技巧,帮助你快速掌握Java数组的精髓。
58 23
【Java并发】【AQS】适合初学者体质的AQS入门
AQS这是灰常重要的哈,很多JUC下的框架的核心,那都是我们的AQS,所以这里,我们直接开始先研究AQS。 那说到研究AQS,那我们应该,使用开始说起🤓 入门 什么是AQS? AQS(Abst
44 8
Java中的字符集编码入门-增补字符(转载)
本文探讨Java对Unicode的支持及其发展历程。文章详细解析了Unicode字符集的结构,包括基本多语言面(BMP)和增补字符的表示方法,以及UTF-16编码中surrogate pair的使用。同时介绍了代码点和代码单元的概念,并解释了UTF-8的编码规则及其兼容性。
126 60
【C++数据结构——线性表】顺序表的基本运算(头歌实践教学平台习题)【合集】
本文档介绍了线性表的基本运算任务,涵盖顺序表和链表的初始化、销毁、判定是否为空、求长度、输出、查找元素、插入和删除元素等内容。通过C++代码示例详细展示了每一步骤的具体实现方法,并提供了测试说明和通关代码。 主要内容包括: - **任务描述**:实现顺序表的基本运算。 - **相关知识**:介绍线性表的基本概念及操作,如初始化、销毁、判定是否为空表等。 - **具体操作**:详述顺序表和链表的初始化、求长度、输出、查找、插入和删除元素的方法,并附有代码示例。 - **测试说明**:提供测试输入和预期输出,确保代码正确性。 - **通关代码**:给出完整的C++代码实现,帮助完成任务。 文档
103 5
Spring Boot 入门:简化 Java Web 开发的强大工具
Spring Boot 是一个开源的 Java 基础框架,用于创建独立、生产级别的基于Spring框架的应用程序。它旨在简化Spring应用的初始搭建以及开发过程。
131 7
Spring Boot 入门:简化 Java Web 开发的强大工具
数据结构中二叉树,哈希表,顺序表,链表的比较补充
二叉搜索树,哈希表,顺序表,链表的特点的比较
数据结构中二叉树,哈希表,顺序表,链表的比较补充
Java 集合江湖:底层数据结构的大揭秘!
小米是一位热爱技术分享的程序员,本文详细解析了Java面试中常见的List、Set、Map的区别。不仅介绍了它们的基本特性和实现类,还深入探讨了各自的使用场景和面试技巧,帮助读者更好地理解和应对相关问题。
79 5
Java虚拟机调优的艺术:从入门到精通####
本文作为一篇深入浅出的技术指南,旨在为Java开发者揭示JVM调优的神秘面纱,通过剖析其背后的原理、分享实战经验与最佳实践,引领读者踏上从调优新手到高手的进阶之路。不同于传统的摘要概述,本文将以一场虚拟的对话形式,模拟一位经验丰富的架构师向初学者传授JVM调优的心法,激发学习兴趣,同时概括性地介绍文章将探讨的核心议题——性能监控、垃圾回收优化、内存管理及常见问题解决策略。 ####