Spring Boot加一个注解,轻松实现 Redis 分布式锁

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介: Spring Boot加一个注解,轻松实现 Redis 分布式锁


一、业务背景

有些业务请求,属于耗时操作,需要加锁,防止后续的并发操作,同时对数据库的数据进行操作,需要避免对之前的业务造成影响。


基于 Spring Boot + MyBatis Plus + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

二、分析流程

使用 Redis 作为分布式锁,将锁的状态放到 Redis 统一维护,解决集群中单机 JVM 信息不互通的问题,规定操作顺序,保护用户的数据正确。

梳理设计流程

  1. 新建注解 @interface,在注解里设定入参标志
  2. 增加 AOP 切点,扫描特定注解
  3. 建立 @Aspect 切面任务,注册 bean 和拦截特定方法
  4. 特定方法参数 ProceedingJoinPoint,对方法 pjp.proceed() 前后进行拦截
  5. 切点前进行加锁,任务执行后进行删除 key

核心步骤:加锁、解锁和续时

加锁

使用了 RedisTemplate 的 opsForValue.setIfAbsent 方法,判断是否有 key,设定一个随机数 UUID.random().toString,生成一个随机数作为 value。

从 redis 中获取锁之后,对 key 设定 expire 失效时间,到期后自动释放锁。

按照这种设计,只有第一个成功设定 Key 的请求,才能进行后续的数据操作,后续其它请求由于无法获得🔐资源,将会失败结束。

超时问题

担心 pjp.proceed() 切点执行的方法太耗时,导致 Redis 中的 key 由于超时提前释放了。

例如,线程 A 先获取锁,proceed 方法耗时,超过了锁超时时间,到期释放了锁,这时另一个线程 B 成功获取 Redis 锁,两个线程同时对同一批数据进行操作,导致数据不准确。

解决方案:增加一个「续时」

任务不完成,锁不释放:

维护了一个定时线程池 ScheduledExecutorService,每隔 2s 去扫描加入队列中的 Task,判断是否失效时间是否快到了,公式为:【失效时间】<= 【当前时间】+【失效间隔(三分之一超时)】

/**
 * 线程池,每个 JVM 使用一个线程去维护 keyAliveTime,定时执行 runnable
 */
private static final ScheduledExecutorService SCHEDULER =
new ScheduledThreadPoolExecutor(1,
new BasicThreadFactory.Builder().namingPattern("redisLock-schedule-pool").daemon(true).build());
static {
    SCHEDULER.scheduleAtFixedRate(() -> {
        // do something to extend time
    }, 0,  2, TimeUnit.SECONDS);
}

基于 Spring Cloud Alibaba + Gateway + Nacos + RocketMQ + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

三、设计方案

经过上面的分析,同事小🐟设计出了这个方案:

前面已经说了整体流程,这里强调一下几个核心步骤:

  • 拦截注解 @RedisLock,获取必要的参数
  • 加锁操作
  • 续时操作
  • 结束业务,释放锁

四、实操

之前也有整理过 AOP 使用方法,可以参考一下

相关属性类配置

业务属性枚举设定

public enum RedisLockTypeEnum {
    /**
     * 自定义 key 前缀
     */
    ONE("Business1", "Test1"),
    TWO("Business2", "Test2");
    private String code;
    private String desc;
    RedisLockTypeEnum(String code, String desc) {
        this.code = code;
        this.desc = desc;
    }
    public String getCode() {
        return code;
    }
    public String getDesc() {
        return desc;
    }
    public String getUniqueKey(String key) {
        return String.format("%s:%s", this.getCode(), key);
    }
}

任务队列保存参数

public enum RedisLockTypeEnum {
    /**
     * 自定义 key 前缀
     */
    ONE("Business1", "Test1"),
    TWO("Business2", "Test2");
    private String code;
    private String desc;
    RedisLockTypeEnum(String code, String desc) {
        this.code = code;
        this.desc = desc;
    }
    public String getCode() {
        return code;
    }
    public String getDesc() {
        return desc;
    }
    public String getUniqueKey(String key) {
        return String.format("%s:%s", this.getCode(), key);
    }
}

设定被拦截的注解名字

@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.METHOD, ElementType.TYPE})
public @interface RedisLockAnnotation {
    /**
     * 特定参数识别,默认取第 0 个下标
     */
    int lockFiled() default 0;
    /**
     * 超时重试次数
     */
    int tryCount() default 3;
    /**
     * 自定义加锁类型
     */
    RedisLockTypeEnum typeEnum();
    /**
     * 释放时间,秒 s 单位
     */
    long lockTime() default 30;
}

核心切面拦截的操作

RedisLockAspect.java 该类分成三部分来描述具体作用

Pointcut 设定

/**
 * @annotation 中的路径表示拦截特定注解
 */
@Pointcut("@annotation(cn.sevenyuan.demo.aop.lock.RedisLockAnnotation)")
public void redisLockPC() {
}

Around 前后进行加锁和释放锁

前面步骤定义了我们想要拦截的切点,下一步就是在切点前后做一些自定义操作:

@Around(value = "redisLockPC()")
public Object around(ProceedingJoinPoint pjp) throws Throwable {
    // 解析参数
    Method method = resolveMethod(pjp);
    RedisLockAnnotation annotation = method.getAnnotation(RedisLockAnnotation.class);
    RedisLockTypeEnum typeEnum = annotation.typeEnum();
    Object[] params = pjp.getArgs();
    String ukString = params[annotation.lockFiled()].toString();
    // 省略很多参数校验和判空
    String businessKey = typeEnum.getUniqueKey(ukString);
    String uniqueValue = UUID.randomUUID().toString();
    // 加锁
    Object result = null;
    try {
        boolean isSuccess = redisTemplate.opsForValue().setIfAbsent(businessKey, uniqueValue);
        if (!isSuccess) {
            throw new Exception("You can't do it,because another has get the lock =-=");
        }
        redisTemplate.expire(businessKey, annotation.lockTime(), TimeUnit.SECONDS);
        Thread currentThread = Thread.currentThread();
        // 将本次 Task 信息加入「延时」队列中
        holderList.add(new RedisLockDefinitionHolder(businessKey, annotation.lockTime(), System.currentTimeMillis(),
                currentThread, annotation.tryCount()));
        // 执行业务操作
        result = pjp.proceed();
        // 线程被中断,抛出异常,中断此次请求
        if (currentThread.isInterrupted()) {
            throw new InterruptedException("You had been interrupted =-=");
        }
    } catch (InterruptedException e ) {
        log.error("Interrupt exception, rollback transaction", e);
        throw new Exception("Interrupt exception, please send request again");
    } catch (Exception e) {
        log.error("has some error, please check again", e);
    } finally {
        // 请求结束后,强制删掉 key,释放锁
        redisTemplate.delete(businessKey);
        log.info("release the lock, businessKey is [" + businessKey + "]");
    }
    return result;
}

上述流程简单总结一下:

  • 解析注解参数,获取注解值和方法上的参数值
  • redis 加锁并且设置超时时间
  • 将本次 Task 信息加入「延时」队列中,进行续时,方式提前释放锁
  • 加了一个线程中断标志
  • 结束请求,finally 中释放锁

续时操作

这里用了 ScheduledExecutorService,维护了一个线程,不断对任务队列中的任务进行判断和延长超时时间:

// 扫描的任务队列
private static ConcurrentLinkedQueue<RedisLockDefinitionHolder> holderList = new ConcurrentLinkedQueue();
/**
 * 线程池,维护keyAliveTime
 */
private static final ScheduledExecutorService SCHEDULER = new ScheduledThreadPoolExecutor(1,
        new BasicThreadFactory.Builder().namingPattern("redisLock-schedule-pool").daemon(true).build());
{
    // 两秒执行一次「续时」操作
    SCHEDULER.scheduleAtFixedRate(() -> {
        // 这里记得加 try-catch,否者报错后定时任务将不会再执行=-=
        Iterator<RedisLockDefinitionHolder> iterator = holderList.iterator();
        while (iterator.hasNext()) {
            RedisLockDefinitionHolder holder = iterator.next();
            // 判空
            if (holder == null) {
                iterator.remove();
                continue;
            }
            // 判断 key 是否还有效,无效的话进行移除
            if (redisTemplate.opsForValue().get(holder.getBusinessKey()) == null) {
                iterator.remove();
                continue;
            }
            // 超时重试次数,超过时给线程设定中断
            if (holder.getCurrentCount() > holder.getTryCount()) {
                holder.getCurrentTread().interrupt();
                iterator.remove();
                continue;
            }
            // 判断是否进入最后三分之一时间
            long curTime = System.currentTimeMillis();
            boolean shouldExtend = (holder.getLastModifyTime() + holder.getModifyPeriod()) <= curTime;
            if (shouldExtend) {
                holder.setLastModifyTime(curTime);
                redisTemplate.expire(holder.getBusinessKey(), holder.getLockTime(), TimeUnit.SECONDS);
                log.info("businessKey : [" + holder.getBusinessKey() + "], try count : " + holder.getCurrentCount());
                holder.setCurrentCount(holder.getCurrentCount() + 1);
            }
        }
    }, 0, 2, TimeUnit.SECONDS);
}

这段代码,用来实现设计图中虚线框的思想,避免一个请求十分耗时,导致提前释放了锁。

这里加了「线程中断」Thread#interrupt,希望超过重试次数后,能让线程中断 (未经严谨测试,仅供参考哈哈哈哈)

不过建议如果遇到这么耗时的请求,还是能够从根源上查找,分析耗时路径,进行业务优化或其它处理,避免这些耗时操作。

所以记得多打点 Log,分析问题时可以更快一点。


五、开始测试

在一个入口方法中,使用该注解,然后在业务中模拟耗时请求,使用了 Thread#sleep

@GetMapping("/testRedisLock")
@RedisLockAnnotation(typeEnum = RedisLockTypeEnum.ONE, lockTime = 3)
public Book testRedisLock(@RequestParam("userId") Long userId) {
    try {
        log.info("睡眠执行前");
        Thread.sleep(10000);
        log.info("睡眠执行后");
    } catch (Exception e) {
        // log error
        log.info("has some error", e);
    }
    return null;
}

使用时,在方法上添加该注解,然后设定相应参数即可,根据 typeEnum 可以区分多种业务,限制该业务被同时操作。

测试结果:

2020-04-04 14:55:50.864  INFO 9326 --- [nio-8081-exec-1] c.s.demo.controller.BookController       : 睡眠执行前
2020-04-04 14:55:52.855  INFO 9326 --- [k-schedule-pool] c.s.demo.aop.lock.RedisLockAspect        : businessKey : [Business1:1024], try count : 0
2020-04-04 14:55:54.851  INFO 9326 --- [k-schedule-pool] c.s.demo.aop.lock.RedisLockAspect        : businessKey : [Business1:1024], try count : 1
2020-04-04 14:55:56.851  INFO 9326 --- [k-schedule-pool] c.s.demo.aop.lock.RedisLockAspect        : businessKey : [Business1:1024], try count : 2
2020-04-04 14:55:58.852  INFO 9326 --- [k-schedule-pool] c.s.demo.aop.lock.RedisLockAspect        : businessKey : [Business1:1024], try count : 3
2020-04-04 14:56:00.857  INFO 9326 --- [nio-8081-exec-1] c.s.demo.controller.BookController       : has some error
java.lang.InterruptedException: sleep interrupted
 at java.lang.Thread.sleep(Native Method) [na:1.8.0_221]

我这里测试的是重试次数过多,失败的场景,如果减少睡眠时间,就能让业务正常执行。

如果同时请求,你将会发现以下错误信息:

表示我们的锁🔐的确生效了,避免了重复请求。


六、总结

对于耗时业务和核心数据,不能让重复的请求同时操作数据,避免数据的不正确,所以要使用分布式锁来对它们进行保护。

再来梳理一下设计流程:

  1. 新建注解 @interface,在注解里设定入参标志
  2. 增加 AOP 切点,扫描特定注解
  3. 建立 @Aspect 切面任务,注册 bean 和拦截特定方法
  4. 特定方法参数 ProceedingJoinPoint,对方法 pjp.proceed() 前后进行拦截
  5. 切点前进行加锁,任务执行后进行删除 key

本次学习是通过 Review 小伙伴的代码设计,从中了解分布式锁的具体实现,仿照他的设计,重新写了一份简化版的业务处理。对于之前没考虑到的「续时」操作,这里使用了守护线程来定时判断和延长超时时间,避免了锁提前释放。

于是乎,同时回顾了三个知识点:

1、AOP 的实现和常用方法

2、定时线程池 ScheduledExecutorService 的使用和参数含义

3、线程 Thread#interrupt 的含义以及用法(这个挺有意思的,可以深入再学习一下)

image.png

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
24天前
|
存储 NoSQL Java
使用lock4j-redis-template-spring-boot-starter实现redis分布式锁
通过使用 `lock4j-redis-template-spring-boot-starter`,我们可以轻松实现 Redis 分布式锁,从而解决分布式系统中多个实例并发访问共享资源的问题。合理配置和使用分布式锁,可以有效提高系统的稳定性和数据的一致性。希望本文对你在实际项目中使用 Redis 分布式锁有所帮助。
70 5
|
27天前
|
NoSQL Java 数据处理
基于Redis海量数据场景分布式ID架构实践
【11月更文挑战第30天】在现代分布式系统中,生成全局唯一的ID是一个常见且重要的需求。在微服务架构中,各个服务可能需要生成唯一标识符,如用户ID、订单ID等。传统的自增ID已经无法满足在集群环境下保持唯一性的要求,而分布式ID解决方案能够确保即使在多个实例间也能生成全局唯一的标识符。本文将深入探讨如何利用Redis实现分布式ID生成,并通过Java语言展示多个示例,同时分析每个实践方案的优缺点。
60 8
|
25天前
|
缓存 NoSQL Java
Spring Boot中的分布式缓存方案
Spring Boot提供了简便的方式来集成和使用分布式缓存。通过Redis和Memcached等缓存方案,可以显著提升应用的性能和扩展性。合理配置和优化缓存策略,可以有效避免常见的缓存问题,保证系统的稳定性和高效运行。
43 3
|
1月前
|
存储 Java 关系型数据库
在Spring Boot中整合Seata框架实现分布式事务
可以在 Spring Boot 中成功整合 Seata 框架,实现分布式事务的管理和处理。在实际应用中,还需要根据具体的业务需求和技术架构进行进一步的优化和调整。同时,要注意处理各种可能出现的问题,以保障分布式事务的顺利执行。
54 6
|
1月前
|
缓存 NoSQL PHP
Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出
本文深入探讨了Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出。文章还介绍了Redis在页面缓存、数据缓存和会话缓存等应用场景中的使用,并强调了缓存数据一致性、过期时间设置、容量控制和安全问题的重要性。
43 5
|
1月前
|
NoSQL Java API
springboot项目Redis统计在线用户
通过本文的介绍,您可以在Spring Boot项目中使用Redis实现在线用户统计。通过合理配置Redis和实现用户登录、注销及统计逻辑,您可以高效地管理在线用户。希望本文的详细解释和代码示例能帮助您在实际项目中成功应用这一技术。
41 4
|
2月前
|
人工智能 自然语言处理 前端开发
SpringBoot + 通义千问 + 自定义React组件:支持EventStream数据解析的技术实践
【10月更文挑战第7天】在现代Web开发中,集成多种技术栈以实现复杂的功能需求已成为常态。本文将详细介绍如何使用SpringBoot作为后端框架,结合阿里巴巴的通义千问(一个强大的自然语言处理服务),并通过自定义React组件来支持服务器发送事件(SSE, Server-Sent Events)的EventStream数据解析。这一组合不仅能够实现高效的实时通信,还能利用AI技术提升用户体验。
245 2
|
3天前
|
Java 数据库连接 Maven
最新版 | 深入剖析SpringBoot3源码——分析自动装配原理(面试常考)
自动装配是现在面试中常考的一道面试题。本文基于最新的 SpringBoot 3.3.3 版本的源码来分析自动装配的原理,并在文未说明了SpringBoot2和SpringBoot3的自动装配源码中区别,以及面试回答的拿分核心话术。
最新版 | 深入剖析SpringBoot3源码——分析自动装配原理(面试常考)
|
10天前
|
NoSQL Java Redis
Spring Boot 自动配置机制:从原理到自定义
Spring Boot 的自动配置机制通过 `spring.factories` 文件和 `@EnableAutoConfiguration` 注解,根据类路径中的依赖和条件注解自动配置所需的 Bean,大大简化了开发过程。本文深入探讨了自动配置的原理、条件化配置、自定义自动配置以及实际应用案例,帮助开发者更好地理解和利用这一强大特性。
55 14
|
1月前
|
缓存 IDE Java
SpringBoot入门(7)- 配置热部署devtools工具
SpringBoot入门(7)- 配置热部署devtools工具
50 1
SpringBoot入门(7)- 配置热部署devtools工具