观点:Service Mesh和API网关正在逐步融合

本文涉及的产品
云原生 API 网关,700元额度,多规格可选
简介: 观点:Service Mesh和API网关正在逐步融合



关于 Service Mesh 和 API Gateway 之间的关系,这个问题过去两年间经常被问起,社区也有不少文章和资料给出解答。其中不乏 Christian Posta 这样的网红给出过深度介绍。我在这里做一个资料的整理和汇总,结合个人的理解给出一些看法。另外在本文最后,介绍蚂蚁金服在 Service Mesh 和 API Gateway 融合的这个最新领域的一些开创性的实践和探索,希望给大家一个更有体感的认知。

为了节约篇幅,我们将直奔主题,假定读者对 Service Mesh 和 API Gateway 已有基本的了解。

1 原本清晰的界限:定位和职责

首先,Service Mesh 和 API Gateway 在功能定位和承担的职责上有非常清晰的界限:

  • Service Mesh:微服务的网络通信基础设施,负责(系统内部的)服务间的通讯;
  • API Gateway:负责将服务以 API 的形式暴露(给系统外部),以实现业务功能;

如下图所示:

从功能和职责上说:

  • 位于最底层的是拆分好的原子微服务,以服务的形式提供各种能力;
  • 在原子微服务上是(可选的)组合服务,某些场景下需要将若干微服务的能力组合起来形成新的服务;
  • 原子微服务和组合服务部署于 系统内部,在采用 Service Mesh 的情况下,由 Service Mesh 提供服务间通讯的能力;
  • API Gateway 用于将系统内部的这些服务暴露给 系统外部,以 API 的形式接受外部请求。

从部署上说:

  • Service Mesh 部署在系统内部:因为原子微服务和组合服务通常不会直接暴露给外部系统;
  • API Gateway 部署在系统的边缘:一方面暴露在系统之外,对外提供 API 供外部系统访问;一方面部署在系统内部,以访问内部的各种服务。

在这里引入两个使用非常广泛的术语:

  • 东西向通讯:指服务间的相互访问,其通讯流量在服务间流转,流量都位于系统内部;
  • 南北向通讯:指服务对外部提供访问,通常是通过 API Gateway 提供的 API 对外部保罗,其通讯流量是从系统外部进入系统内部。

解释一下“东西南北”的由来:如上图所示,通常在地图上习惯性的遵循“上北下南,左西右东”的原则。

总结:Service Mesh 和 API Gateway 在功能和职责上分工明确,界限清晰。但如果事情就这么结束,也就不会出现 Service Mesh 和 API Gateway 关系的讨论了,自然也不会有本文。

问题的根源在哪里?

强烈推荐阅读:

基于 Spring Boot + MyBatis Plus + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

2 哲学问题:网关访问内部服务,算东西向还是南北向?

如下图所示,图中黄色的线条表示的是 API Gateway 访问内部服务:

问题来了,从流量走向看:这是外部流量进入系统后,开始访问对外暴露的服务,应该属于“南北向”通讯,典型如上图的画法。但从另外一个角度,如果我们将 API Gateway 逻辑上拆分为两个部分,先忽略对外暴露的部分,单独只看 API Gateway 访问内部服务的部分,这时可以视 API Gateway 为一个普通的客户端服务,它和内部服务的通讯更像是“东西向”通讯:

所以,API Gateway 作为一个客户端访问内部服务时,到底算南北向还是东西向,就成为一个哲学问题:完全取决于我们如何看待 API Gateway ,是作为一个整体,还是逻辑上分拆为对内对外两个部分。

这个哲学问题并非无厘头,在 API Gateway 的各种产品中,关于如何实现 “API Gateway 作为一个客户端访问内部服务” ,就通常分成两个流派:

  • 泾渭分明:视 API Gateway 和内部服务为两个独立事物,API Gateway 访问内部服务的通讯机制自行实现,独立于服务间通讯的机制;
  • 兼容并济:视 API Gateway 为一个普通的内部服务的客户端,重用其内部服务间通讯的机制。

而最终决策通常也和产品的定位有关:如果希望维持 API Gateway 的独立产品定位,希望可以在不同的服务间通讯方案下都可以使用,则通常选择前者,典型如 Kong;如果和服务间通讯方案有非常深的渊源,则通常选择后者,典型如 Spring Cloud 生态下的 Zuul 和 Spring Cloud Gateway。

但无论选择哪个流派,都改变不了一个事实,当 “API Gateway 作为一个客户端访问内部服务” 时,它的确和一个普通内部服务作为客户端去访问其他服务没有本质差异:服务发现、负载均衡、流量路由、熔断、限流、服务降级、故障注入、日志、监控、链路追踪、访问控制、加密、身份认证…… 当我们把网关访问内部服务的功能一一列出来时,发现几乎所有的这些功能都是和服务间调用重复。

这也就造成了一个普遍现象:如果已有一个成熟的服务间通讯框架,再去考虑实现 API Gateway,重用这些重复的能力就成为自然而然的选择。典型如前面提到的 Spring Cloud 生态下的 Zuul 以及后面开发的 Spring Cloud Gateway,就是以重用类库的方式实现了这些能力的重用。

这里又是一个类似的哲学问题:当 “API Gateway 作为一个客户端访问内部服务” 时,它以重用类库的方式实现了代码级别的能力重用,相当于自行实现了一个和普通服务间通讯方案完全一样的客户端,那这个“客户端”发出来的流量算东西向还是南北向?

答案不重要。

基于 Spring Cloud Alibaba + Gateway + Nacos + RocketMQ + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

3 Sidecar:真正的重合点

在进入 Service Mesh 时代之后,Service Mesh 和 API Gateway 的关系开始是这样:

  • 功能和职责清晰划分;
  • 客户端访问服务的功能高度重叠。

此时两者的关系很清晰,而且由于当时 Service Mesh 和 API Gateway 是不同的产品,两者的重合点只是在功能上。

而随着时间的推移,当 Service Mesh 产品和 API Gateway 产品开始出现相互渗透时,两者的关系就开始变得暧昧。

在 Service Mesh 出现之后,如何为基于 Service Mesh 的服务选择合适的 API Gateway 方案,就慢慢开始提上日程,而其中选择重用 Service Mesh 的能力也自然成为一个探索的方向,并逐步出现新式 API Gateway 产品,其想法很直接:

如何融合东西向和南北向的通讯方案?

其中的一个做法就是基于 Service Mesh 的 Sidecar 来实现 API Gateway,从而在南北向通讯中引入 Service Mesh 这种东西向通讯的方案。这里我们不展开细节,我这里援引一个图片(鸣谢赵化冰同学)来解释这个方案的思路:

这个时候 Service Mesh 和 API Gateway 的关系就变得有意思了,因为 Service Mesh 中 Sidecar 的引入,所以前面的“哲学问题”又有了一个新的解法:API Gateway 这次真的可以分拆为两个独立部署的物理实体,而不是逻辑上的两个部分:

  • API Gateway 本体:实现 API Gateway 除了访问内部服务之外的功能;
  • Sidecar:按照 Service Mesh 的标准做法, 我们视 API Gateway 为一个部署于 Service Mesh 中的普通服务,为这个服务 1:1 的部署 Sidecar。

在这个方案中,原来用于 Service Mesh 的 Sidecar,被用在了 API Gateway 中,替代了 API Gateway 中原有的客户端访问的各种功能。这个方案让 API Gateway 的实现简化了很多,也实现了东西向和南北向通讯能力的重用和融合,而 API Gateway 可以更专注于 “API Management” 的核心功能。

此时 Service Mesh 和 API Gateway 的关系就从“泾渭分明”变成了“兼容并济”。

而采用这个方案的公司,通常都是先有 Service Mesh 产品,再基于 Service Mesh 产品规划(或者重新规划) API Gateway 方案,典型如蚂蚁金服的 SOFA Gateway 产品是基于 MOSN,而社区开源产品 Ambassador 和 Gloo 都是基于 Envoy。

上述方案的优势在于 API Gateway 和 Sidecar 独立部署,职责明确,架构清晰。但是,和 Service Mesh 使用Sidecar 被质疑多一跳会造成性能开销影响效率一样,API Gateway 使用 Sidecar 也被同样的质疑:多了一跳……

解决“多一跳”问题的方法简单而粗暴,基于 Sidecar,将 API Gateway 的功能加进来。这样 API Gateway 本体和 Sidecar 再次合二为一:

至于走到这一步之后,Service Mesh 和 API Gateway 是什么关系:这到底算是 Service Mesh/Sidecar 融合了 API Gateway,还是 API Gateway 融合了 Service Mesh/Sidecar?这个问题就像斑马到底是白底黑纹还是黑底白纹一样,见仁见智。

4 BFF:把融合进行到底

BFF(Backend For Frontend)的引入会让 Service Mesh 和 API Gateway 走到一个更加亲密的地步。

先来看看常规的 BFF 的玩法:

在这里,多增加了一个 BFF 层,介于 API Gateway 和内部服务(包括组合服务和原子微服务)之间。注意 BFF 的工作模式和组合服务很类似,都是组合多个服务。但差别在于:

  • 组合服务还属于服务的范畴,只是实现机制上组合了多个服务,对外暴露的依然是一个完整和规范的服务;
  • BFF 不同,BFF 如名字所示,Backend For Frontend,完全是为了前端而存在,核心目标之一是简化前端的访问;
  • 对我们今天的话题而言,最关键的一点:BFF 完全收口了从外部进入的流量,而组合服务没有,API Gateway 是可以直接访问原子微服务的。

“BFF 完全收口外部流量”,这一点在 API Gateway 和 Sidecar 融合之后,会变得很有想象空间,我们先看按照前面的融合方式,在有 BFF 的情况下,API Gateway 和 Sidecar 融合后的情景:

放大一点,单独看 API Gateway 和 BFF:

注意到,流量从被 API Gateway 接收,到进入 BFF 在这个流程中,这个请求路径中有两个 Sidecar:

  • 和 BFF 部署在一起的,是没有 API Gateway 功能的普通 Sidecar;
  • API Gateway 和 Sidecar 融合之后,这就是一个“有 API Gateway 功能的大 Sidecar”(或者是“有 Sidecar 功能的特殊 API Gateway”):虽然扮演了 API Gateway 的角色,但本质上依然包含一个完整功能的 Sidecar,和 BFF 自带的 Sidecar 是等同的。

所以,问题来了:为什么要放两个 Sidecar 在流程中,缩减到一个会怎么样?我们尝试将两个 Sidecar 合二为一,去掉 BFF 自带的 Sidecar,直接把扮演 API Gateway 的 Sidecar 给 BFF 用:

此时的场景是这样:

  • 流量直接打到 BFF 上(BFF 前面可能会挂其他的网络组件提供负载均衡等功能);
  • BFF 的 Sidecar 接收流量,完成 API Gateway 的功能,然后将流量转给 BFF;
  • BFF 通过 Sidecar 调用内部服务(和没有合并时一致)。

注意这里有一个关键点,在前面时特意注明的:“BFF 完全收口外部流量”。这是前提条件,因为原有的 API Gateway 集群已经不再存在,如果 BFF 没能收口全部流量,则这些未能收口的流量会找不到 API Gateway。当然,如果愿意稍微麻烦一点,在部署时清晰的划定需要暴露给外界的服务,直接在这些服务上部署带 API Gateway 功能的 Sidecar,也是可行的,只是管理上会比 BFF 模式要复杂一些。

另外,在部署上,按照上面的方案,我们会发现:API Gateway“消失”了 —— 不再有一个明确物理部署的 API Gateway 的集群,常规的中心化的网关在这个方案中被融合到每一个 BFF 的实例中,从而实现另外一个重要特性:去中心化。

上述 Service Mesh 和 API Gateway 融合的方案,并未停留在纸面上。

在蚂蚁金服内部,我们基于 Service Mesh 和 API Gateway 融合 + 去中心化的思路,进行过开创性的实践和探索。以支付宝移动网关为例,在过去十年间,网关经历了从单体到微服务,从中心化到去中心化,从共享的 gateway.jar 包到利用 MOSN 实现网关 Mesh 化/ Sidecar 化,最终演变成了这样一个方案:

强烈推荐阅读:https://www.infoq.cn/article/azCFGyTDGakZqaLEEDMN,对此有深入介绍和详细描述。

5 总结

本文总结了 Service Mesh 和 API Gateway 的关系,整体上说两者的定位和职责“泾渭分明”,但在具体实现上,开始出现融合的趋势:早期传统方式是类库级别的代码复用,最新趋势是 API Gateway 和 Sidecar 合二为一。

后者的发展才刚刚起步,包括在蚂蚁金服我们也是才开始探索这个方向,但是相信在未来一两年间,社区可能会有更多的类似产品形态出现。

补充介绍一下文中多次提到的“MOSN”:

MOSN 是 Modular Open Smart Network 的简称, 是一款使用 Go 语言开发的网络代理软件,由蚂蚁金服开源并经过几十万容器的生产级验证。MOSN 作为云原生的网络数据平面,旨在为服务提供多协议、模块化、智能化、安全的代理能力。MOSN 可以与任何支持 xDS API 的 Service Mesh 集成,亦可以作为独立的四、七层负载均衡,API Gateway、云原生 Ingress 等使用。



欢迎加入我的知识星球,一起探讨架构,交流源码。加入方式,长按下方二维码噢

相关文章
|
5月前
|
Java API 网络安全
探索Java中的Stream API:从基础到高级应用云计算与网络安全:技术融合与挑战
【8月更文挑战第27天】在Java的海洋中,Stream API犹如一艘强大的船,让开发者能以声明式的方式处理集合数据。本文将启航,先带你了解Stream的基本概念和用法,再深入探讨其高级特性,如并行流、管道操作以及性能考量。我们将通过具体代码示例,展示如何高效利用Stream API简化数据处理流程,提升代码的可读性和性能。无论你是初学者还是有经验的开发者,这篇文章都将为你打开一扇通往更优雅编程风格的大门。
|
6月前
|
人工智能 自然语言处理 API
深度融合与创新:Open API技术促进AI服务生态构建
【7月更文第21天】在数字化转型的浪潮中,人工智能(AI)已从概念探索走向实际应用,深刻改变着各行各业。Open API(开放应用程序接口)作为连接技术与业务的桥梁,正成为推动AI服务普及和生态构建的关键力量。本文将探讨Open API技术如何通过标准化、易用性和灵活性,加速AI服务的集成与创新,构建一个更加丰富多元的AI服务生态系统。
254 2
|
8月前
|
监控 Devops API
构建高效微服务架构:API网关的作用与实践构建高效稳定的云基础设施:DevOps与容器化技术融合实践
【5月更文挑战第28天】 在当今的软件开发领域,微服务架构因其灵活性、可扩展性和容错能力而备受推崇。本文将深入探讨API网关在构建微服务系统中的关键角色,包括它如何促进系统的高可用性、安全性和性能监控。我们将剖析API网关的核心组件,并借助具体实例展示如何实现一个高效的API网关来服务于复杂的微服务环境。 【5月更文挑战第28天】 随着企业数字化转型的深入,传统的IT运维模式已难以满足快速迭代和持续交付的需求。本文聚焦于如何通过融合DevOps理念与容器化技术来构建一个高效、稳定且可扩展的云基础设施。我们将探讨持续集成/持续部署(CI/CD)流程的优化、基于微服务架构的容器化部署以及自动化监
|
8月前
|
负载均衡 监控 Kubernetes
构建高效微服务架构:API网关与服务发现的融合实践
【5月更文挑战第29天】 在当今的软件开发领域,微服务架构已成为一种流行的设计模式,其通过将应用程序拆分为一系列小型、自治的服务来提供灵活性和可扩展性。然而,随着服务数量的增加,确保通信效率和管理便捷性成为了关键挑战。本文聚焦于如何通过API网关和服务发现机制的有效整合,优化微服务间的交互,提高系统整体性能和可靠性。我们将探讨API网关在请求路由、负载均衡、安全性增强方面的作用,同时分析服务发现对于实现服务间动态通信的重要性,并展示两者如何协同工作以支持复杂的后端系统需求。
|
8月前
|
负载均衡 监控 API
构建高效微服务架构:API网关与服务发现的融合实践
【5月更文挑战第29天】 在微服务架构中,服务的分布式特性要求精确的服务发现机制和灵活的流量控制手段。本文将探讨如何通过合并API网关和服务发现功能来优化后端服务的通信效率,降低延迟,并提升系统的可伸缩性。我们将分析传统模式下两者独立运作的弊端,并提出一种集成方案,该方案不仅能够简化系统架构,还能增强服务的自愈能力。文章还将讨论实施过程中可能遇到的挑战及相应的解决策略。
|
8月前
|
物联网 5G 数据中心
超融合网关的应用场景
超融合网关的应用场景
|
8月前
|
网络协议 安全 网络虚拟化
超融合网关技术
超融合网关技术
《超融合网关和软硬件网关编排平台》电子版地址
超融合网关和软硬件网关编排平台.ppt
133 0
《超融合网关和软硬件网关编排平台》电子版地址
|
JSON 缓存 安全
开源IM项目OpenIM发布消息推送api,支持应用与IM互通深度融合
开源IM项目OpenIM发布消息推送api,支持应用与IM互通深度融合
1662 0
开源IM项目OpenIM发布消息推送api,支持应用与IM互通深度融合
|
3月前
|
安全 5G 网络性能优化