《阿里巴巴大数据运维实践》电子版地址

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 阿里巴巴大数据运维实践

《阿里巴巴大数据运维实践》阿里巴巴大数据运维实践

电子书:

屏幕快照 2022-06-17 上午9.58.35.png

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
3月前
|
SQL 存储 分布式计算
ODPS技术架构深度剖析与实战指南——从零开始掌握阿里巴巴大数据处理平台的核心要义与应用技巧
【10月更文挑战第9天】ODPS是阿里巴巴推出的大数据处理平台,支持海量数据的存储与计算,适用于数据仓库、数据挖掘等场景。其核心组件涵盖数据存储、计算引擎、任务调度、资源管理和用户界面,确保数据处理的稳定、安全与高效。通过创建项目、上传数据、编写SQL或MapReduce程序,用户可轻松完成复杂的数据处理任务。示例展示了如何使用ODPS SQL查询每个用户的最早登录时间。
192 1
|
1月前
|
机器学习/深度学习 人工智能 运维
智能化运维:AI与大数据在IT运维中的应用探索####
本文旨在探讨人工智能(AI)与大数据分析技术如何革新传统IT运维模式,提升运维效率与服务质量。通过具体案例分析,揭示AI算法在故障预测、异常检测及自动化修复等方面的实际应用成效,同时阐述大数据如何助力实现精准运维管理,降低运营成本,提升用户体验。文章还将简要讨论实施智能化运维面临的挑战与未来发展趋势,为IT管理者提供决策参考。 ####
|
5月前
|
运维 算法 数据可视化
【2021 高校大数据挑战赛-智能运维中的异常检测与趋势预测】2 方案设计与实现-Python
文章详细介绍了参加2021高校大数据挑战赛中智能运维异常检测与趋势预测任务的方案设计与Python实现,包括问题一的异常点和异常周期检测、问题二的异常预测多变量分类问题,以及问题三的多变量KPI指标预测问题的算法过程描述和代码实现。
83 0
|
3月前
|
机器学习/深度学习 人工智能 运维
智能运维:大数据与AI的融合之道###
【10月更文挑战第20天】 运维领域正经历一场静悄悄的变革,大数据与人工智能的深度融合正重塑着传统的运维模式。本文探讨了智能运维如何借助大数据分析和机器学习算法,实现从被动响应到主动预防的转变,提升系统稳定性和效率的同时,降低了运维成本。通过实例解析,揭示智能运维在现代IT架构中的核心价值,为读者提供一份关于未来运维趋势的深刻洞察。 ###
124 10
|
5月前
|
机器学习/深度学习 搜索推荐 算法
飞天大数据平台产品问题之AIRec在阿里巴巴飞天大数据平台中的功能如何解决
飞天大数据平台产品问题之AIRec在阿里巴巴飞天大数据平台中的功能如何解决
|
5月前
|
存储 运维 Cloud Native
"Flink+Paimon:阿里云大数据云原生运维数仓的创新实践,引领实时数据处理新纪元"
【8月更文挑战第2天】Flink+Paimon在阿里云大数据云原生运维数仓的实践
296 3
|
6月前
|
存储 搜索推荐 数据建模
阿里巴巴大数据实践之数据建模:构建企业级数据湖
阿里巴巴通过构建高效的数据湖和实施先进的数据建模策略,实现了数据驱动的业务增长。这些实践不仅提升了内部运营效率,也为客户提供了更好的服务体验。随着数据量的不断增长和技术的不断创新,阿里巴巴将持续优化其数据建模方法,以适应未来的变化和发展。
|
5月前
|
机器学习/深度学习 运维 算法
【2021 高校大数据挑战赛-智能运维中的异常检测与趋势预测】1 赛后总结与分析
对2021高校大数据挑战赛中智能运维异常检测与趋势预测赛题的赛后总结与分析,涉及赛题解析、不足与改进,并提供了异常检测、异常预测和趋势预测的方法和模型选择的讨论。
133 0
【2021 高校大数据挑战赛-智能运维中的异常检测与趋势预测】1 赛后总结与分析
|
6月前
|
存储 分布式计算 Hadoop
阿里巴巴飞天大数据架构体系与Hadoop生态系统的深度融合:构建高效、可扩展的数据处理平台
技术持续创新:随着新技术的不断涌现和应用场景的复杂化,阿里巴巴将继续投入研发力量推动技术创新和升级换代。 生态系统更加完善:Hadoop生态系统将继续扩展和完善,为用户提供更多元化、更灵活的数据处理工具和服务。
|
6月前
|
SQL Java 大数据
开发与运维应用问题之大数据SQL数据膨胀如何解决
开发与运维应用问题之大数据SQL数据膨胀如何解决