BP预测 | MATLAB实现FA-BP多输入单输出回归预测(萤火虫算法优化BP神经网络)

简介: BP预测 | MATLAB实现FA-BP多输入单输出回归预测(萤火虫算法优化BP神经网络)

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

算法基本思想描述如下:在群体中,每个萤火虫个体被随机分布在目标函数定义的空间中,初始阶段,所有的萤火虫都具有相同的荧光素值和动态决策半径。其中,每个萤火虫个体根据来自动态决策半径内所有邻居萤火虫信号的强弱来决定其移动的方向。萤火虫的动态决策半径会随着在它范围内萤火虫个体的数目而变化,每个萤火虫的荧光素也会随着决策半径内萤火虫个体的数目而改变。萤火虫群优化算法是无记忆的,无需目标函数的全局信息和梯度信息,具有计算速度快,调节参数少,易于实现等特点。萤火虫进化过程中,每次迭代都由萤火虫的部署(初始化)荧光素更新阶段移动概率计算阶段位置更新阶段邻域范围更新阶段五个部分组成,现分别介绍如下:

1、萤火虫的部署(初始化)

2、荧光素更新阶段

3、移动概率计算阶段

4、位置更新阶段

5、邻域范围更新阶段

⛄ 部分代码

function error = fun(x,inputnum,hiddennum,outputnum,net,inputn,outputn)

%该函数用来计算适应度值

%x          input     个体

%inputnum   input     输入层节点数

%outputnum  input     隐含层节点数

%net        input     网络

%inputn     input     训练输入数据

%outputn    input     训练输出数据


%error      output    个体适应度值


%提取

w1=x(1:inputnum*hiddennum);%十个权值

B1=x(inputnum*hiddennum+1:inputnum*hiddennum+hiddennum);%五个阈值

w2=x(inputnum*hiddennum+hiddennum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum);%五个权值

B2=x(inputnum*hiddennum+hiddennum+hiddennum*outputnum+1:inputnum*hiddennum+hiddennum+hiddennum*outputnum+outputnum);%一个阈值



%网络进化参数

net.trainParam.epochs=20;

net.trainParam.lr=0.1;

net.trainParam.goal=0.00001;

net.trainParam.show=100;

net.trainParam.showWindow=false;

 

%网络权值赋值

net.iw{1,1}=reshape(w1,hiddennum,inputnum);

net.lw{2,1}=reshape(w2,outputnum,hiddennum);

net.b{1}=reshape(B1,hiddennum,1);

net.b{2}=B2;

%应该是net是个结构体,然后第一个net.IW{1,1}是指第一层输入到隐藏层的权重,

%这里面第一个1代表隐藏层与此形成鲜明对比的就是第二行的代码:net.IW{2,1}则是说第一个隐藏层的输入矢量到输出层的权重,

%这里面的2代表输出层。理清这些,然后我们来看就很明显了:第一的赋值右边是将第一个w1矩阵变形为隐藏层个数*输入层个数。

%第二个则是从隐藏层到输出层,其中W1,W2都是权重矩阵。最后一行是对第一层(1表示出来了)的阈值赋值。

%网络训练

net=train(net,inputn,outputn);

an=sim(net,inputn);

error=sum(abs(an-outputn));

⛄ 运行结果

⛄ 参考文献

[1]郭晨霞,刘佑祺,杨瑞峰.基于萤火虫算法优化BP神经网络的光强度补偿方法[J].电子测量技术,2021,44(13):6-10.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
1天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
2天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
1天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
1天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
10 3
|
6天前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
基于ACO蚁群优化的VRPSD问题求解MATLAB仿真,输出ACO优化的收敛曲线、规划路径结果及每条路径的满载率。在MATLAB2022a版本中运行,展示了优化过程和最终路径规划结果。核心程序通过迭代搜索最优路径,更新信息素矩阵,确保找到满足客户需求且总行程成本最小的车辆调度方案。
|
12天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
15天前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
该程序基于ACO蚁群优化算法解决VRPSD问题,使用MATLAB2022a实现,输出优化收敛曲线及路径规划结果。ACO通过模拟蚂蚁寻找食物的行为,利用信息素和启发式信息指导搜索,有效求解带时间窗约束的车辆路径问题,最小化总行程成本。
|
11天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
33 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
13天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
6天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。