【TVM 学习资料】快速入门:编译深度学习模型

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,5000CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 【TVM 学习资料】快速入门:编译深度学习模型

本篇文章译自英文文档 Quick Start Tutorial for Compiling Deep Learning Models 作者是 Yao Wang,Truman Tian。更多 TVM 中文文档可访问→ TVM 中文站

这个例子展示了如何用 Relay Python 前端构建神经网络,并为装有 TVM 的 NVIDIA GPU 生成 runtime 库。注意,构建 TVM 需要启用 CUDA 和 LLVM。

TVM 支持的硬件后端概述

下图显示了 TVM 当前支持的硬件后端:

image.png

本教程将选择 CUDA 和 LLVM 作为目标后端。首先,导入 Relay 和 TVM。

import numpy as np
from tvm import relay
from tvm.relay import testing
import tvm
from tvm import te
from tvm.contrib import graph_executor
import tvm.testing

在 Relay 中定义神经网络

首先,定义一个带有 Relay Python 前端的神经网络。简单起见,我们在 Relay 中使用预定义的 resnet-18 网络。参数用 Xavier 初始化程序进行初始化。 Relay 还支持其他模型格式,如 MXNet、CoreML、ONNX 和 Tensorflow。

本教程假设在我们的设备上进行推理,并将 batch size 设置为 1。输入图像是大小为 224 * 224 的 RGB 彩色图像。调用 tvm.relay.expr.TupleWrapper.astext() 可以查看网络结构。

batch_size = 1
num_class = 1000
image_shape = (3, 224, 224)
data_shape = (batch_size,) + image_shape
out_shape = (batch_size, num_class)
mod, params = relay.testing.resnet.get_workload(
    num_layers=18, batch_size=batch_size, image_shape=image_shape
)
# 想显示元数据则设置 show_meta_data=True
print(mod.astext(show_meta_data=False))

访问代码中的 mod.astext 更多信息

输出结果:

#[version = "0.0.5"]
def @main(%data: Tensor[(1, 3, 224, 224), float32] /* ty=Tensor[(1, 3, 224, 224), float32] */, %bn_data_gamma: Tensor[(3), float32] /* ty=Tensor[(3), float32] */, %bn_data_beta: Tensor[(3), float32] /* ty=Tensor[(3), float32] */, %bn_data_moving_mean: Tensor[(3), float32] /* ty=Tensor[(3), float32] */, %bn_data_moving_var: Tensor[(3), float32] /* ty=Tensor[(3), float32] */, %conv0_weight: Tensor[(64, 3, 7, 7), float32] /* ty=Tensor[(64, 3, 7, 7), float32] */, %bn0_gamma: Tensor[(64), float32] /* ty=Tensor[(64), float32] */, %bn0_beta: Tensor[(64), float32] /* ty=Tensor[(64), float32] */, %bn0_moving_mean: Tensor[(64), float32] /* ty=Tensor[(64), float32] */, %bn0_moving_var: Tensor[(64), float32] /* ty=Tensor[(64), float32] */, %stage1_unit1_bn1_gamma: Tensor[(64), float32] /* ty=Tensor[(64), float32] */, %stage1_unit1_bn1_beta: Tensor[(64), float32] /* ty=Tensor[(64), float32] */, %stage1_unit1_bn1_moving_mean: Tensor[(64), float32] /* ty=Tensor[(64), float32] */, %stage1_unit1_bn1_moving_var: Tensor[(64), float32] /* ty=Tensor[(64), float32] */, %stage1_unit1_conv1_weight: Tensor[(64, 64, 3, 3), float32] /* ty=Tensor[(64, 64, 3, 3), float32] */, %stage1_unit1_bn2_gamma: Tensor[(64), float32] /* ty=Tensor[(64), float32] */, %stage1_unit1_bn2_beta: Tensor[(64), float32] /* ty=Tensor[(64), float32] */, %stage1_unit1_bn2_moving_mean: Tensor[(64), float32] /* ty=Tensor[(64), float32] */, %stage1_unit1_bn2_moving_var: Tensor[(64), float32] /* ty=Tensor[(64), float32] */, %stage1_unit1_conv2_weight: Tensor[(64, 64, 3, 3), float32] /* ty=Tensor[(64, 64, 3, 3), float32] */, %stage1_unit1_sc_weight: Tensor[(64, 64, 1, 1), float32] /* ty=Tensor[(64, 64, 1, 1), float32] */, %stage1_unit2_bn1_gamma: Tensor[(64), float32] /* ty=Tensor[(64), float32] */, %stage1_unit2_bn1_beta: Tensor[(64), float32] /* ty=Tensor[(64), float32] */, %stage1_unit2_bn1_moving_mean: Tensor[(64), float32] /* ty=Tensor[(64), float32] */, %stage1_unit2_bn1_moving_var: Tensor[(64), float32] /* ty=Tensor[(64), float32] */, %stage1_unit2_conv1_weight: Tensor[(64, 64, 3, 3), float32] /* ty=Tensor[(64, 64, 3, 3), float32] */, %stage1_unit2_bn2_gamma: Tensor[(64), float32] /* ty=Tensor[(64), float32] */, %stage1_unit2_bn2_beta: Tensor[(64), float32] /* ty=Tensor[(64), float32] */, %stage1_unit2_bn2_moving_mean: Tensor[(64), float32] /* ty=Tensor[(64), float32] */, %stage1_unit2_bn2_moving_var: Tensor[(64), float32] /* ty=Tensor[(64), float32] */, %stage1_unit2_conv2_weight: Tensor[(64, 64, 3, 3), float32] /* ty=Tensor[(64, 64, 3, 3), float32] */, %stage2_unit1_bn1_gamma: Tensor[(64), float32] /* ty=Tensor[(64), float32] */, %stage2_unit1_bn1_beta: Tensor[(64), float32] /* ty=Tensor[(64), float32] */, %stage2_unit1_bn1_moving_mean: Tensor[(64), float32] /* ty=Tensor[(64), float32] */, %stage2_unit1_bn1_moving_var: Tensor[(64), float32] /* ty=Tensor[(64), float32] */, %stage2_unit1_conv1_weight: Tensor[(128, 64, 3, 3), float32] /* ty=Tensor[(128, 64, 3, 3), float32] */, %stage2_unit1_bn2_gamma: Tensor[(128), float32] /* ty=Tensor[(128), float32] */, %stage2_unit1_bn2_beta: Tensor[(128), float32] /* ty=Tensor[(128), float32] */, %stage2_unit1_bn2_moving_mean: Tensor[(128), float32] /* ty=Tensor[(128), float32] */, %stage2_unit1_bn2_moving_var: Tensor[(128), float32] /* ty=Tensor[(128), float32] */, %stage2_unit1_conv2_weight: Tensor[(128, 128, 3, 3), float32] /* ty=Tensor[(128, 128, 3, 3), float32] */, %stage2_unit1_sc_weight: Tensor[(128, 64, 1, 1), float32] /* ty=Tensor[(128, 64, 1, 1), float32] */, %stage2_unit2_bn1_gamma: Tensor[(128), float32] /* ty=Tensor[(128), float32] */, %stage2_unit2_bn1_beta: Tensor[(128), float32] /* ty=Tensor[(128), float32] */, %stage2_unit2_bn1_moving_mean: Tensor[(128), float32] /* ty=Tensor[(128), float32] */, %stage2_unit2_bn1_moving_var: Tensor[(128), float32] /* ty=Tensor[(128), float32] */, %stage2_unit2_conv1_weight: Tensor[(128, 128, 3, 3), float32] /* ty=Tensor[(128, 128, 3, 3), float32] */, %stage2_unit2_bn2_gamma: Tensor[(128), float32] /* ty=Tensor[(128), float32] */, %stage2_unit2_bn2_beta: Tensor[(128), float32] /* ty=Tensor[(128), float32] */, %stage2_unit2_bn2_moving_mean: Tensor[(128), float32] /* ty=Tensor[(128), float32] */, %stage2_unit2_bn2_moving_var: Tensor[(128), float32] /* ty=Tensor[(128), float32] */, %stage2_unit2_conv2_weight: Tensor[(128, 128, 3, 3), float32] /* ty=Tensor[(128, 128, 3, 3), float32] */, %stage3_unit1_bn1_gamma: Tensor[(128), float32] /* ty=Tensor[(128), float32] */, %stage3_unit1_bn1_beta: Tensor[(128), float32] /* ty=Tensor[(128), float32] */, %stage3_unit1_bn1_moving_mean: Tensor[(128), float32] /* ty=Tensor[(128), float32] */, %stage3_unit1_bn1_moving_var: Tensor[(128), float32] /* ty=Tensor[(128), float32] */, %stage3_unit1_conv1_weight: Tensor[(256, 128, 3, 3), float32] /* ty=Tensor[(256, 128, 3, 3), float32] */, %stage3_unit1_bn2_gamma: Tensor[(256), float32] /* ty=Tensor[(256), float32] */, %stage3_unit1_bn2_beta: Tensor[(256), float32] /* ty=Tensor[(256), float32] */, %stage3_unit1_bn2_moving_mean: Tensor[(256), float32] /* ty=Tensor[(256), float32] */, %stage3_unit1_bn2_moving_var: Tensor[(256), float32] /* ty=Tensor[(256), float32] */, %stage3_unit1_conv2_weight: Tensor[(256, 256, 3, 3), float32] /* ty=Tensor[(256, 256, 3, 3), float32] */, %stage3_unit1_sc_weight: Tensor[(256, 128, 1, 1), float32] /* ty=Tensor[(256, 128, 1, 1), float32] */, %stage3_unit2_bn1_gamma: Tensor[(256), float32] /* ty=Tensor[(256), float32] */, %stage3_unit2_bn1_beta: Tensor[(256), float32] /* ty=Tensor[(256), float32] */, %stage3_unit2_bn1_moving_mean: Tensor[(256), float32] /* ty=Tensor[(256), float32] */, %stage3_unit2_bn1_moving_var: Tensor[(256), float32] /* ty=Tensor[(256), float32] */, %stage3_unit2_conv1_weight: Tensor[(256, 256, 3, 3), float32] /* ty=Tensor[(256, 256, 3, 3), float32] */, %stage3_unit2_bn2_gamma: Tensor[(256), float32] /* ty=Tensor[(256), float32] */, %stage3_unit2_bn2_beta: Tensor[(256), float32] /* ty=Tensor[(256), float32] */, %stage3_unit2_bn2_moving_mean: Tensor[(256), float32] /* ty=Tensor[(256), float32] */, %stage3_unit2_bn2_moving_var: Tensor[(256), float32] /* ty=Tensor[(256), float32] */, %stage3_unit2_conv2_weight: Tensor[(256, 256, 3, 3), float32] /* ty=Tensor[(256, 256, 3, 3), float32] */, %stage4_unit1_bn1_gamma: Tensor[(256), float32] /* ty=Tensor[(256), float32] */, %stage4_unit1_bn1_beta: Tensor[(256), float32] /* ty=Tensor[(256), float32] */, %stage4_unit1_bn1_moving_mean: Tensor[(256), float32] /* ty=Tensor[(256), float32] */, %stage4_unit1_bn1_moving_var: Tensor[(256), float32] /* ty=Tensor[(256), float32] */, %stage4_unit1_conv1_weight: Tensor[(512, 256, 3, 3), float32] /* ty=Tensor[(512, 256, 3, 3), float32] */, %stage4_unit1_bn2_gamma: Tensor[(512), float32] /* ty=Tensor[(512), float32] */, %stage4_unit1_bn2_beta: Tensor[(512), float32] /* ty=Tensor[(512), float32] */, %stage4_unit1_bn2_moving_mean: Tensor[(512), float32] /* ty=Tensor[(512), float32] */, %stage4_unit1_bn2_moving_var: Tensor[(512), float32] /* ty=Tensor[(512), float32] */, %stage4_unit1_conv2_weight: Tensor[(512, 512, 3, 3), float32] /* ty=Tensor[(512, 512, 3, 3), float32] */, %stage4_unit1_sc_weight: Tensor[(512, 256, 1, 1), float32] /* ty=Tensor[(512, 256, 1, 1), float32] */, %stage4_unit2_bn1_gamma: Tensor[(512), float32] /* ty=Tensor[(512), float32] */, %stage4_unit2_bn1_beta: Tensor[(512), float32] /* ty=Tensor[(512), float32] */, %stage4_unit2_bn1_moving_mean: Tensor[(512), float32] /* ty=Tensor[(512), float32] */, %stage4_unit2_bn1_moving_var: Tensor[(512), float32] /* ty=Tensor[(512), float32] */, %stage4_unit2_conv1_weight: Tensor[(512, 512, 3, 3), float32] /* ty=Tensor[(512, 512, 3, 3), float32] */, %stage4_unit2_bn2_gamma: Tensor[(512), float32] /* ty=Tensor[(512), float32] */, %stage4_unit2_bn2_beta: Tensor[(512), float32] /* ty=Tensor[(512), float32] */, %stage4_unit2_bn2_moving_mean: Tensor[(512), float32] /* ty=Tensor[(512), float32] */, %stage4_unit2_bn2_moving_var: Tensor[(512), float32] /* ty=Tensor[(512), float32] */, %stage4_unit2_conv2_weight: Tensor[(512, 512, 3, 3), float32] /* ty=Tensor[(512, 512, 3, 3), float32] */, %bn1_gamma: Tensor[(512), float32] /* ty=Tensor[(512), float32] */, %bn1_beta: Tensor[(512), float32] /* ty=Tensor[(512), float32] */, %bn1_moving_mean: Tensor[(512), float32] /* ty=Tensor[(512), float32] */, %bn1_moving_var: Tensor[(512), float32] /* ty=Tensor[(512), float32] */, %fc1_weight: Tensor[(1000, 512), float32] /* ty=Tensor[(1000, 512), float32] */, %fc1_bias: Tensor[(1000), float32] /* ty=Tensor[(1000), float32] */) -> Tensor[(1, 1000), float32] {
  %0 = nn.batch_norm(%data, %bn_data_gamma, %bn_data_beta, %bn_data_moving_mean, %bn_data_moving_var, epsilon=2e-05f, scale=False) /* ty=(Tensor[(1, 3, 224, 224), float32], Tensor[(3), float32], Tensor[(3), float32]) */;
  %1 = %0.0 /* ty=Tensor[(1, 3, 224, 224), float32] */;
  %2 = nn.conv2d(%1, %conv0_weight, strides=[2, 2], padding=[3, 3, 3, 3], channels=64, kernel_size=[7, 7]) /* ty=Tensor[(1, 64, 112, 112), float32] */;
  %3 = nn.batch_norm(%2, %bn0_gamma, %bn0_beta, %bn0_moving_mean, %bn0_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 64, 112, 112), float32], Tensor[(64), float32], Tensor[(64), float32]) */;
  %4 = %3.0 /* ty=Tensor[(1, 64, 112, 112), float32] */;
  %5 = nn.relu(%4) /* ty=Tensor[(1, 64, 112, 112), float32] */;
  %6 = nn.max_pool2d(%5, pool_size=[3, 3], strides=[2, 2], padding=[1, 1, 1, 1]) /* ty=Tensor[(1, 64, 56, 56), float32] */;
  %7 = nn.batch_norm(%6, %stage1_unit1_bn1_gamma, %stage1_unit1_bn1_beta, %stage1_unit1_bn1_moving_mean, %stage1_unit1_bn1_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 64, 56, 56), float32], Tensor[(64), float32], Tensor[(64), float32]) */;
  %8 = %7.0 /* ty=Tensor[(1, 64, 56, 56), float32] */;
  %9 = nn.relu(%8) /* ty=Tensor[(1, 64, 56, 56), float32] */;
  %10 = nn.conv2d(%9, %stage1_unit1_conv1_weight, padding=[1, 1, 1, 1], channels=64, kernel_size=[3, 3]) /* ty=Tensor[(1, 64, 56, 56), float32] */;
  %11 = nn.batch_norm(%10, %stage1_unit1_bn2_gamma, %stage1_unit1_bn2_beta, %stage1_unit1_bn2_moving_mean, %stage1_unit1_bn2_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 64, 56, 56), float32], Tensor[(64), float32], Tensor[(64), float32]) */;
  %12 = %11.0 /* ty=Tensor[(1, 64, 56, 56), float32] */;
  %13 = nn.relu(%12) /* ty=Tensor[(1, 64, 56, 56), float32] */;
  %14 = nn.conv2d(%13, %stage1_unit1_conv2_weight, padding=[1, 1, 1, 1], channels=64, kernel_size=[3, 3]) /* ty=Tensor[(1, 64, 56, 56), float32] */;
  %15 = nn.conv2d(%9, %stage1_unit1_sc_weight, padding=[0, 0, 0, 0], channels=64, kernel_size=[1, 1]) /* ty=Tensor[(1, 64, 56, 56), float32] */;
  %16 = add(%14, %15) /* ty=Tensor[(1, 64, 56, 56), float32] */;
  %17 = nn.batch_norm(%16, %stage1_unit2_bn1_gamma, %stage1_unit2_bn1_beta, %stage1_unit2_bn1_moving_mean, %stage1_unit2_bn1_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 64, 56, 56), float32], Tensor[(64), float32], Tensor[(64), float32]) */;
  %18 = %17.0 /* ty=Tensor[(1, 64, 56, 56), float32] */;
  %19 = nn.relu(%18) /* ty=Tensor[(1, 64, 56, 56), float32] */;
  %20 = nn.conv2d(%19, %stage1_unit2_conv1_weight, padding=[1, 1, 1, 1], channels=64, kernel_size=[3, 3]) /* ty=Tensor[(1, 64, 56, 56), float32] */;
  %21 = nn.batch_norm(%20, %stage1_unit2_bn2_gamma, %stage1_unit2_bn2_beta, %stage1_unit2_bn2_moving_mean, %stage1_unit2_bn2_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 64, 56, 56), float32], Tensor[(64), float32], Tensor[(64), float32]) */;
  %22 = %21.0 /* ty=Tensor[(1, 64, 56, 56), float32] */;
  %23 = nn.relu(%22) /* ty=Tensor[(1, 64, 56, 56), float32] */;
  %24 = nn.conv2d(%23, %stage1_unit2_conv2_weight, padding=[1, 1, 1, 1], channels=64, kernel_size=[3, 3]) /* ty=Tensor[(1, 64, 56, 56), float32] */;
  %25 = add(%24, %16) /* ty=Tensor[(1, 64, 56, 56), float32] */;
  %26 = nn.batch_norm(%25, %stage2_unit1_bn1_gamma, %stage2_unit1_bn1_beta, %stage2_unit1_bn1_moving_mean, %stage2_unit1_bn1_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 64, 56, 56), float32], Tensor[(64), float32], Tensor[(64), float32]) */;
  %27 = %26.0 /* ty=Tensor[(1, 64, 56, 56), float32] */;
  %28 = nn.relu(%27) /* ty=Tensor[(1, 64, 56, 56), float32] */;
  %29 = nn.conv2d(%28, %stage2_unit1_conv1_weight, strides=[2, 2], padding=[1, 1, 1, 1], channels=128, kernel_size=[3, 3]) /* ty=Tensor[(1, 128, 28, 28), float32] */;
  %30 = nn.batch_norm(%29, %stage2_unit1_bn2_gamma, %stage2_unit1_bn2_beta, %stage2_unit1_bn2_moving_mean, %stage2_unit1_bn2_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 128, 28, 28), float32], Tensor[(128), float32], Tensor[(128), float32]) */;
  %31 = %30.0 /* ty=Tensor[(1, 128, 28, 28), float32] */;
  %32 = nn.relu(%31) /* ty=Tensor[(1, 128, 28, 28), float32] */;
  %33 = nn.conv2d(%32, %stage2_unit1_conv2_weight, padding=[1, 1, 1, 1], channels=128, kernel_size=[3, 3]) /* ty=Tensor[(1, 128, 28, 28), float32] */;
  %34 = nn.conv2d(%28, %stage2_unit1_sc_weight, strides=[2, 2], padding=[0, 0, 0, 0], channels=128, kernel_size=[1, 1]) /* ty=Tensor[(1, 128, 28, 28), float32] */;
  %35 = add(%33, %34) /* ty=Tensor[(1, 128, 28, 28), float32] */;
  %36 = nn.batch_norm(%35, %stage2_unit2_bn1_gamma, %stage2_unit2_bn1_beta, %stage2_unit2_bn1_moving_mean, %stage2_unit2_bn1_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 128, 28, 28), float32], Tensor[(128), float32], Tensor[(128), float32]) */;
  %37 = %36.0 /* ty=Tensor[(1, 128, 28, 28), float32] */;
  %38 = nn.relu(%37) /* ty=Tensor[(1, 128, 28, 28), float32] */;
  %39 = nn.conv2d(%38, %stage2_unit2_conv1_weight, padding=[1, 1, 1, 1], channels=128, kernel_size=[3, 3]) /* ty=Tensor[(1, 128, 28, 28), float32] */;
  %40 = nn.batch_norm(%39, %stage2_unit2_bn2_gamma, %stage2_unit2_bn2_beta, %stage2_unit2_bn2_moving_mean, %stage2_unit2_bn2_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 128, 28, 28), float32], Tensor[(128), float32], Tensor[(128), float32]) */;
  %41 = %40.0 /* ty=Tensor[(1, 128, 28, 28), float32] */;
  %42 = nn.relu(%41) /* ty=Tensor[(1, 128, 28, 28), float32] */;
  %43 = nn.conv2d(%42, %stage2_unit2_conv2_weight, padding=[1, 1, 1, 1], channels=128, kernel_size=[3, 3]) /* ty=Tensor[(1, 128, 28, 28), float32] */;
  %44 = add(%43, %35) /* ty=Tensor[(1, 128, 28, 28), float32] */;
  %45 = nn.batch_norm(%44, %stage3_unit1_bn1_gamma, %stage3_unit1_bn1_beta, %stage3_unit1_bn1_moving_mean, %stage3_unit1_bn1_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 128, 28, 28), float32], Tensor[(128), float32], Tensor[(128), float32]) */;
  %46 = %45.0 /* ty=Tensor[(1, 128, 28, 28), float32] */;
  %47 = nn.relu(%46) /* ty=Tensor[(1, 128, 28, 28), float32] */;
  %48 = nn.conv2d(%47, %stage3_unit1_conv1_weight, strides=[2, 2], padding=[1, 1, 1, 1], channels=256, kernel_size=[3, 3]) /* ty=Tensor[(1, 256, 14, 14), float32] */;
  %49 = nn.batch_norm(%48, %stage3_unit1_bn2_gamma, %stage3_unit1_bn2_beta, %stage3_unit1_bn2_moving_mean, %stage3_unit1_bn2_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 256, 14, 14), float32], Tensor[(256), float32], Tensor[(256), float32]) */;
  %50 = %49.0 /* ty=Tensor[(1, 256, 14, 14), float32] */;
  %51 = nn.relu(%50) /* ty=Tensor[(1, 256, 14, 14), float32] */;
  %52 = nn.conv2d(%51, %stage3_unit1_conv2_weight, padding=[1, 1, 1, 1], channels=256, kernel_size=[3, 3]) /* ty=Tensor[(1, 256, 14, 14), float32] */;
  %53 = nn.conv2d(%47, %stage3_unit1_sc_weight, strides=[2, 2], padding=[0, 0, 0, 0], channels=256, kernel_size=[1, 1]) /* ty=Tensor[(1, 256, 14, 14), float32] */;
  %54 = add(%52, %53) /* ty=Tensor[(1, 256, 14, 14), float32] */;
  %55 = nn.batch_norm(%54, %stage3_unit2_bn1_gamma, %stage3_unit2_bn1_beta, %stage3_unit2_bn1_moving_mean, %stage3_unit2_bn1_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 256, 14, 14), float32], Tensor[(256), float32], Tensor[(256), float32]) */;
  %56 = %55.0 /* ty=Tensor[(1, 256, 14, 14), float32] */;
  %57 = nn.relu(%56) /* ty=Tensor[(1, 256, 14, 14), float32] */;
  %58 = nn.conv2d(%57, %stage3_unit2_conv1_weight, padding=[1, 1, 1, 1], channels=256, kernel_size=[3, 3]) /* ty=Tensor[(1, 256, 14, 14), float32] */;
  %59 = nn.batch_norm(%58, %stage3_unit2_bn2_gamma, %stage3_unit2_bn2_beta, %stage3_unit2_bn2_moving_mean, %stage3_unit2_bn2_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 256, 14, 14), float32], Tensor[(256), float32], Tensor[(256), float32]) */;
  %60 = %59.0 /* ty=Tensor[(1, 256, 14, 14), float32] */;
  %61 = nn.relu(%60) /* ty=Tensor[(1, 256, 14, 14), float32] */;
  %62 = nn.conv2d(%61, %stage3_unit2_conv2_weight, padding=[1, 1, 1, 1], channels=256, kernel_size=[3, 3]) /* ty=Tensor[(1, 256, 14, 14), float32] */;
  %63 = add(%62, %54) /* ty=Tensor[(1, 256, 14, 14), float32] */;
  %64 = nn.batch_norm(%63, %stage4_unit1_bn1_gamma, %stage4_unit1_bn1_beta, %stage4_unit1_bn1_moving_mean, %stage4_unit1_bn1_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 256, 14, 14), float32], Tensor[(256), float32], Tensor[(256), float32]) */;
  %65 = %64.0 /* ty=Tensor[(1, 256, 14, 14), float32] */;
  %66 = nn.relu(%65) /* ty=Tensor[(1, 256, 14, 14), float32] */;
  %67 = nn.conv2d(%66, %stage4_unit1_conv1_weight, strides=[2, 2], padding=[1, 1, 1, 1], channels=512, kernel_size=[3, 3]) /* ty=Tensor[(1, 512, 7, 7), float32] */;
  %68 = nn.batch_norm(%67, %stage4_unit1_bn2_gamma, %stage4_unit1_bn2_beta, %stage4_unit1_bn2_moving_mean, %stage4_unit1_bn2_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 512, 7, 7), float32], Tensor[(512), float32], Tensor[(512), float32]) */;
  %69 = %68.0 /* ty=Tensor[(1, 512, 7, 7), float32] */;
  %70 = nn.relu(%69) /* ty=Tensor[(1, 512, 7, 7), float32] */;
  %71 = nn.conv2d(%70, %stage4_unit1_conv2_weight, padding=[1, 1, 1, 1], channels=512, kernel_size=[3, 3]) /* ty=Tensor[(1, 512, 7, 7), float32] */;
  %72 = nn.conv2d(%66, %stage4_unit1_sc_weight, strides=[2, 2], padding=[0, 0, 0, 0], channels=512, kernel_size=[1, 1]) /* ty=Tensor[(1, 512, 7, 7), float32] */;
  %73 = add(%71, %72) /* ty=Tensor[(1, 512, 7, 7), float32] */;
  %74 = nn.batch_norm(%73, %stage4_unit2_bn1_gamma, %stage4_unit2_bn1_beta, %stage4_unit2_bn1_moving_mean, %stage4_unit2_bn1_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 512, 7, 7), float32], Tensor[(512), float32], Tensor[(512), float32]) */;
  %75 = %74.0 /* ty=Tensor[(1, 512, 7, 7), float32] */;
  %76 = nn.relu(%75) /* ty=Tensor[(1, 512, 7, 7), float32] */;
  %77 = nn.conv2d(%76, %stage4_unit2_conv1_weight, padding=[1, 1, 1, 1], channels=512, kernel_size=[3, 3]) /* ty=Tensor[(1, 512, 7, 7), float32] */;
  %78 = nn.batch_norm(%77, %stage4_unit2_bn2_gamma, %stage4_unit2_bn2_beta, %stage4_unit2_bn2_moving_mean, %stage4_unit2_bn2_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 512, 7, 7), float32], Tensor[(512), float32], Tensor[(512), float32]) */;
  %79 = %78.0 /* ty=Tensor[(1, 512, 7, 7), float32] */;
  %80 = nn.relu(%79) /* ty=Tensor[(1, 512, 7, 7), float32] */;
  %81 = nn.conv2d(%80, %stage4_unit2_conv2_weight, padding=[1, 1, 1, 1], channels=512, kernel_size=[3, 3]) /* ty=Tensor[(1, 512, 7, 7), float32] */;
  %82 = add(%81, %73) /* ty=Tensor[(1, 512, 7, 7), float32] */;
  %83 = nn.batch_norm(%82, %bn1_gamma, %bn1_beta, %bn1_moving_mean, %bn1_moving_var, epsilon=2e-05f) /* ty=(Tensor[(1, 512, 7, 7), float32], Tensor[(512), float32], Tensor[(512), float32]) */;
  %84 = %83.0 /* ty=Tensor[(1, 512, 7, 7), float32] */;
  %85 = nn.relu(%84) /* ty=Tensor[(1, 512, 7, 7), float32] */;
  %86 = nn.global_avg_pool2d(%85) /* ty=Tensor[(1, 512, 1, 1), float32] */;
  %87 = nn.batch_flatten(%86) /* ty=Tensor[(1, 512), float32] */;
  %88 = nn.dense(%87, %fc1_weight, units=1000) /* ty=Tensor[(1, 1000), float32] */;
  %89 = nn.bias_add(%88, %fc1_bias, axis=-1) /* ty=Tensor[(1, 1000), float32] */;
  nn.softmax(%89) /* ty=Tensor[(1, 1000), float32] */
}

编译

下一步是用 Relay/TVM 管道编译模型。用户可以指定编译的优化级别(目前这个值为 0 到 3)。优化 pass 包括算子融合、预计算、布局变换等。

relay.build() 返回三个组件:JSON 格式的执行图、目标硬件上编译此执行图的函数组成的 TVM 模块库,以及模型的 blobs 参数。在编译过程中,Relay 进行图级优化,而 TVM 进行张量级优化,从而为模型服务提供优化的 runtime 模块。

首先为 NVIDIA GPU 编译。在这个过程中,relay.build() 首先进行了一些图级优化,例如剪枝、融合等,然后将算子(即优化图的节点)注册到 TVM 的实现,从而生成 tvm.module。为了生成模块库,TVM 首先将高级 IR 转换为指定目标后端的底层固有 IR,本例为 CUDA。然后生成的机器码将作为模块库。

opt_level = 3
target = tvm.target.cuda()
with tvm.transform.PassContext(opt_level=opt_level):
    lib = relay.build(mod, target, params=params)

输出结果:

/workspace/python/tvm/target/target.py:377: UserWarning: Try specifying cuda arch by adding 'arch=sm_xx' to your target.
  warnings.warn("Try specifying cuda arch by adding 'arch=sm_xx' to your target.")
/workspace/python/tvm/driver/build_module.py:268: UserWarning: target_host parameter is going to be deprecated. Please pass in tvm.target.Target(target, host=target_host) instead.
  "target_host parameter is going to be deprecated. "

运行生成库

创建图执行器,然后在 NVIDIA GPU 上运行该模块。

# create random input
dev = tvm.cuda()
data = np.random.uniform(-1, 1, size=data_shape).astype("float32")
# create module
module = graph_executor.GraphModule(lib["default"](dev))
# set input and parameters
module.set_input("data", data)
# run
module.run()
# get output
out = module.get_output(0, tvm.nd.empty(out_shape)).numpy()
# Print first 10 elements of output
print(out.flatten()[0:10])

输出结果:

[0.00089283 0.00103331 0.0009094  0.00102275 0.00108751 0.00106737
 0.00106262 0.00095838 0.00110792 0.00113151]

保存和加载编译模块

还可将计算图、库和参数保存到文件中,然后在部署环境中加载。

# 分别将计算图、库和参数保存到不同文件

# 分别将计算图、库和参数保存到不同文件
from tvm.contrib import utils
temp = utils.tempdir()
path_lib = temp.relpath("deploy_lib.tar")
lib.export_library(path_lib)
print(temp.listdir())

输出结果:

['deploy_lib.tar']
# 重新加载模块
loaded_lib = tvm.runtime.load_module(path_lib)
input_data = tvm.nd.array(data)
module = graph_executor.GraphModule(loaded_lib["default"](dev))
module.run(data=input_data)
out_deploy = module.get_output(0).numpy()
# 打印输出的前十个元素
print(out_deploy.flatten()[0:10])
# 检查来自部署模块的输出和原始输出是否一致
tvm.testing.assert_allclose(out_deploy, out, atol=1e-5)

输出结果:

[0.00089283 0.00103331 0.0009094  0.00102275 0.00108751 0.00106737
 0.00106262 0.00095838 0.00110792 0.00113151]


相关文章
|
23天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品市场预测的深度学习模型
使用Python实现智能食品市场预测的深度学习模型
62 5
|
17天前
|
机器学习/深度学习 数据采集 运维
使用 Python 实现深度学习模型:智能食品生产线优化
使用 Python 实现深度学习模型:智能食品生产线优化
51 13
|
14天前
|
机器学习/深度学习 数据采集 数据可视化
TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤
本文介绍了 TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤,包括数据准备、模型定义、损失函数与优化器选择、模型训练与评估、模型保存与部署,并展示了构建全连接神经网络的具体示例。此外,还探讨了 TensorFlow 的高级特性,如自动微分、模型可视化和分布式训练,以及其在未来的发展前景。
38 5
|
22天前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的Transformer模型
探索深度学习中的Transformer模型
28 1
|
25天前
|
机器学习/深度学习 算法 开发者
探索深度学习中的优化器选择对模型性能的影响
在深度学习领域,优化器的选择对于模型训练的效果具有决定性作用。本文通过对比分析不同优化器的工作原理及其在实际应用中的表现,探讨了如何根据具体任务选择合适的优化器以提高模型性能。文章首先概述了几种常见的优化算法,包括梯度下降法、随机梯度下降法(SGD)、动量法、AdaGrad、RMSProp和Adam等;然后,通过实验验证了这些优化器在不同数据集上训练神经网络时的效率与准确性差异;最后,提出了一些基于经验的规则帮助开发者更好地做出选择。
|
24天前
|
机器学习/深度学习 算法 数据可视化
使用Python实现深度学习模型:智能食品配送优化
使用Python实现深度学习模型:智能食品配送优化
40 2
|
23天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
67 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
23天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
67 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
10天前
|
机器学习/深度学习 数据采集 供应链
使用Python实现深度学习模型:智能食品市场分析
使用Python实现深度学习模型:智能食品市场分析
27 0
|
13天前
|
机器学习/深度学习 数据采集 人工智能
探索人工智能中的深度学习模型优化策略
探索人工智能中的深度学习模型优化策略

热门文章

最新文章