人工智能AI图像风格迁移(StyleTransfer),基于双层ControlNet(Python3.10)

简介: 图像风格迁移(Style Transfer)是一种计算机视觉技术,旨在将一幅图像的风格应用到另一幅图像上,从而生成一幅新图像,该新图像结合了两幅原始图像的特点,目的是达到一种风格化叠加的效果,本次我们使用Stable-Diffusion结合ControlNet来实现图像风格迁移效果。

图像风格迁移(Style Transfer)是一种计算机视觉技术,旨在将一幅图像的风格应用到另一幅图像上,从而生成一幅新图像,该新图像结合了两幅原始图像的特点,目的是达到一种风格化叠加的效果,本次我们使用Stable-Diffusion结合ControlNet来实现图像风格迁移效果。

安装ControlNet插件

首先确保本地已经安装并且配置好了Stable-Diffusion-Webui服务,关于Stable-Diffusion-Webui,请参见:人工智能,丹青圣手,全平台(原生/Docker)构建Stable-Diffusion-Webui的AI绘画库教程(Python3.10/Pytorch1.13.0),这里不再赘述。

随后进入项目目录,启动Stable-Diffusion-Webui服务:

python3 launch.py

如果是没有N卡的电脑,就使用cpu模式启动:

python3 launch.py --skip-torch-cuda-test --upcast-sampling --use-cpu interrogate

接着访问 http://localhost:7860

选择插件(Extensions)选项卡

点击从url安装,输入插件地址:github.com/Mikubill/sd-webui-controlnet.git

安装成功后,重启WebUI界面。

由于ControlNet默认是一层网络,风格化操作我们需要两层,所以在设置选单(Settings)中,将多层网络设置为2。

设置好之后,下载模型文件:huggingface.co/webui/ControlNet-modules-safetensors/tree/main

将模型放入 stable-diffusion-webui/extensions/sd-webui-controlnet/models目录

这里还需要单独下载一个风格迁移模型,地址是:huggingface.co/TencentARC/T2I-Adapter/blob/main/models/t2iadapter\_style\_sd14v1.pth

同样放入stable-diffusion-webui/extensions/sd-webui-controlnet/models目录

至此,Stable-Diffusion-Webui服务的ControlNet插件就配置好了。

风格迁移

现在,我们打开ControlNet的第一个图层,将原始图像的轮廓渲染出来,因为需要保证原始图像的基本形状。

这里预处理器选择head,模型使用ControlNet的head模型即可。

可以看到基本轮廓已经得到了保留,风格化只负责颜色和线条。

随后配置第二个ControlNet图层,预处理器选择t2ia\_style-clipvison,模型选择刚刚下载的t2iadapter\_style\_sd14v1.pth,默认图像权重为1,先不要动。

接着上传一张目标风格的图片,这里我们选择文森特梵高的表现主义作品《星空》:

随后点击Generate按钮做图生图(img2img)操作即可。

过拟合问题(Overfitting)

经过一段时间的本地推理,生成结果如下:

效果并不尽如人意,这也是大多数深度学习入门者会遇到的问题,也就是过拟合问题。

过拟合(Overfitting)是指在训练模型时,模型过度地学习了训练数据的特征和噪声,从而导致模型在新数据上表现不佳的问题。

通俗地讲,过拟合就像是一名学生背诵考试答案,但是他只是死记硬背了考试题目的答案,没有真正理解题目的本质和解题思路。当他遇到新的考试题目时,由于没有理解题目的本质和解题思路,他就无法正确回答。

在机器学习中,过拟合的原因是模型复杂度过高,导致模型对训练数据中的噪声和特征都过度追求,并且忽略了数据背后的本质规律和特征。因此,当模型面对新的数据时,由于没有真正理解数据的本质规律和特征,它就无法正确地对新数据进行预测。

说白了,就是对于原始图的特征过分追求,从而淡化了目标图的风格,还记得ControlNet默认权重是1吗?这里我们只需要将权重往下调整,比如调成0.8,再次尝试生成:

效果不错,既保留了原始图的大部分细节,又增加了梵高的表现主义风格。

当然了,权重也不能一味地往下调整,否则也会出现欠拟合(Underfitting)问题,整个风格化迁移的过程也可以理解为是一种“调参”的过程。

结语

通过Stable-Diffusion结合ControlNet插件,我们可以得到一幅新的图像,该图像结合了两幅原始图像的特点,既具有内容图像的内容,又具有风格图像的风格。图像风格迁移也可以应用于其他的领域,比如电影、游戏、虚拟现实和动画创作等等。

相关文章
|
16天前
|
机器学习/深度学习 人工智能 并行计算
"震撼!CLIP模型:OpenAI的跨模态奇迹,让图像与文字共舞,解锁AI理解新纪元!"
【10月更文挑战第14天】CLIP是由OpenAI在2021年推出的一种图像和文本联合表示学习模型,通过对比学习方法预训练,能有效理解图像与文本的关系。该模型由图像编码器和文本编码器组成,分别处理图像和文本数据,通过共享向量空间实现信息融合。CLIP利用大规模图像-文本对数据集进行训练,能够实现zero-shot图像分类、文本-图像检索等多种任务,展现出强大的跨模态理解能力。
58 2
|
4天前
|
人工智能 小程序
【一步步开发AI运动小程序】五、帧图像人体识别
随着AI技术的发展,阿里体育等公司推出的AI运动APP,如“乐动力”和“天天跳绳”,使云上运动会、线上健身等概念广受欢迎。本文将引导您从零开始开发一个AI运动小程序,使用“云智AI运动识别小程序插件”。文章分为四部分:初始化人体识别功能、调用人体识别功能、人体识别结果处理以及识别结果旋转矫正。下篇将继续介绍人体骨骼图绘制。
|
8天前
|
机器学习/深度学习 人工智能 搜索推荐
人工智能与未来医疗:AI技术如何重塑医疗健康领域###
【10月更文挑战第21天】 一场由AI驱动的医疗革命正在悄然发生,它以前所未有的速度和深度改变着我们对于疾病预防、诊断、治疗及健康管理的认知。本文探讨了AI在医疗领域的多维度应用,包括精准医疗、药物研发加速、远程医疗普及以及患者个性化治疗体验的提升,揭示了这场技术变革背后的深远意义与挑战。 ###
33 6
|
9天前
|
人工智能 自动驾驶 数据安全/隐私保护
人工智能的伦理困境:我们如何确保AI的道德发展?
【10月更文挑战第21天】随着人工智能(AI)技术的飞速发展,其在各行各业的应用日益广泛,从而引发了关于AI伦理和道德问题的讨论。本文将探讨AI伦理的核心问题,分析当前面临的挑战,并提出确保AI道德发展的建议措施。
|
9天前
|
人工智能 搜索推荐 安全
人工智能与未来社会:探索AI在教育领域的革命性影响
本文深入探讨了人工智能(AI)技术在教育领域的潜在影响和变革。通过分析AI如何个性化学习路径、提高教学效率以及促进教育资源的公平分配,我们揭示了AI技术对教育模式的重塑力量。文章还讨论了实施AI教育所面临的挑战,包括数据隐私、伦理问题及技术普及障碍,并提出了相应的解决策略。通过具体案例分析,本文旨在启发读者思考AI如何助力构建更加智能、高效和包容的教育生态系统。
|
8天前
|
机器学习/深度学习 人工智能 算法
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
车辆车型识别,使用Python作为主要编程语言,通过收集多种车辆车型图像数据集,然后基于TensorFlow搭建卷积网络算法模型,并对数据集进行训练,最后得到一个识别精度较高的模型文件。再基于Django搭建web网页端操作界面,实现用户上传一张车辆图片识别其类型。
23 0
【车辆车型识别】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+算法模型
|
2天前
|
机器学习/深度学习 人工智能 弹性计算
阿里云AI服务器价格表_GPU服务器租赁费用_AI人工智能高性能计算推理
阿里云AI服务器提供多种配置选项,包括CPU+GPU、CPU+FPGA等组合,支持高性能计算需求。本文汇总了阿里云GPU服务器的价格信息,涵盖NVIDIA A10、V100、T4、P4、P100等多款GPU卡,适用于人工智能、机器学习和深度学习等场景。详细价格表和实例规格见文内图表。
|
4天前
|
机器学习/深度学习 数据采集 人工智能
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】随着人工智能的发展,深度学习技术正逐步应用于教育领域,特别是个性化学习系统中。通过分析学生的学习数据,深度学习模型能够精准预测学生的学习表现,并为其推荐合适的学习资源和规划学习路径,从而提供更加高效、有趣和个性化的学习体验。
37 8
|
3天前
|
人工智能 JSON API
阿里云文档智能 & RAG解决方案:提升AI大模型业务理解与应用
阿里云推出的文档智能 & RAG解决方案,旨在通过先进的文档解析技术和检索增强生成(RAG)方法,显著提升人工智能大模型在业务场景中的应用效果。该方案通过文档智能(Document Mind)技术将非结构化文档内容转换为结构化数据,提取文档的层级树、样式和版面信息,并输出为Markdown和Json格式,为RAG提供语义分块策略。这一过程不仅解决了文档内容解析错误和切块丢失语义信息的问题,还优化了输出LLM友好的Markdown信息。方案的优势在于其多格式支持能力,能够处理包括Office文档、PDF、Html、图片在内的主流文件类型,返回文档的样式、版面信息和层级树结构。
23 2
|
3天前
|
人工智能 搜索推荐 安全
AI技术在医疗领域的应用与挑战
【10月更文挑战第27天】 本文探讨了人工智能(AI)在医疗领域的应用,包括疾病诊断、药物研发和患者管理等方面。同时,也分析了AI在医疗领域面临的挑战,如数据隐私、伦理问题和技术局限性等。通过对这些方面的深入分析,我们可以更好地理解AI在医疗领域的潜力和发展方向。
93 59

热门文章

最新文章