TensorFlow HOWTO 1.2 LASSO、岭和 Elastic Net

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
注册配置 MSE Nacos/ZooKeeper,118元/月
云原生网关 MSE Higress,422元/月
简介: TensorFlow HOWTO 1.2 LASSO、岭和 Elastic Net

1.2 LASSO、岭和 Elastic Net


当参数变多的时候,就要考虑使用正则化进行限制,防止过拟合。


操作步骤


导入所需的包。


import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import sklearn.datasets as ds
import sklearn.model_selection as ms


导入数据,并进行预处理。我们使用波士顿数据集所有数据的全部特征。

boston = ds.load_boston()
x_ = boston.data
y_ = np.expand_dims(boston.target, 1)
x_train, x_test, y_train, y_test = \
    ms.train_test_split(x_, y_, train_size=0.7, test_size=0.3)
mu_train = x_train.mean(0)
sigma_train = x_train.std(0)
x_train = (x_train - mu_train) / sigma_train
x_test = (x_test - mu_train) / sigma_train


定义超参数。

n_input = 13
n_epoch = 2000
lr = 0.05
lam = 0.1
l1_ratio = 0.5


变量 含义
n_input 样本特征数
n_epoch 迭代数
lr 学习率
lam 正则化系数
l1_ratio L1 正则化比例。如果它是 1,模型为 LASSO 回归;如果它是 0,模型为岭回归;如果在 01 之间,模型为 Elastic Net。



搭建模型。


变量 含义
x 输入
y 真实标签
w 权重
b 偏置
z 输出,也就是标签预测值



x = tf.placeholder(tf.float64, [None, n_input])
y = tf.placeholder(tf.float64, [None, 1])
w = tf.Variable(np.random.rand(n_input, 1))
b = tf.Variable(np.random.rand(1, 1))
z = x @ w + b


定义损失、优化操作、和 R 方度量指标。

我们在 MSE 基础上加上两个正则项:


L1=λ1w1L2=λ2w2L=LMSE+L1+L2


变量 含义
mse_loss MSE 损失
l1_loss L1 损失
l2_loss L2 损失
loss 总损失
op 优化操作
y_mean y的均值
r_sqr R 方值



mse_loss = tf.reduce_mean((z - y) ** 2)
l1_loss = lam * l1_ratio * tf.reduce_sum(tf.abs(w))
l2_loss = lam * (1 - l1_ratio) * tf.reduce_sum(w ** 2)
loss = mse_loss + l1_loss + l2_loss
op = tf.train.AdamOptimizer(lr).minimize(loss)
y_mean = tf.reduce_mean(y)
r_sqr = 1 - tf.reduce_sum((y - z) ** 2) / tf.reduce_sum((y - y_mean) ** 2)


使用训练集训练模型。

losses = []
r_sqrs = []
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for e in range(n_epoch):
        _, loss_ = sess.run([op, loss], feed_dict={x: x_train, y: y_train})
        losses.append(loss_)


使用测试集计算 R 方。

r_sqr_ = sess.run(r_sqr, feed_dict={x: x_test, y: y_test})
        r_sqrs.append(r_sqr_)


每一百步打印损失和度量值。

if e % 100 == 0:
            print(f'epoch: {e}, loss: {loss_}, r_sqr: {r_sqr_}')


输出:

epoch: 0, loss: 601.4143942455931, r_sqr: -5.632461200109857
epoch: 100, loss: 337.83817233312953, r_sqr: -2.8921127959091235
epoch: 200, loss: 205.95485710264686, r_sqr: -1.3905038082279204
epoch: 300, loss: 122.56157140781264, r_sqr: -0.4299323503419834
epoch: 400, loss: 73.34245865955972, r_sqr: 0.13473129501015224
epoch: 500, loss: 46.62652385307641, r_sqr: 0.4391669119513518
epoch: 600, loss: 33.418871666746185, r_sqr: 0.5880392599137905
epoch: 700, loss: 27.51559958401544, r_sqr: 0.6533498987634062
epoch: 800, loss: 25.14275351335227, r_sqr: 0.6787325098436232
epoch: 900, loss: 24.28818622078879, r_sqr: 0.6872955402664112
epoch: 1000, loss: 24.01321943982539, r_sqr: 0.689688496343003
epoch: 1100, loss: 23.93439017638524, r_sqr: 0.6901611522536858
epoch: 1200, loss: 23.914316369424643, r_sqr: 0.690163604062231
epoch: 1300, loss: 23.909792588385457, r_sqr: 0.6901031472929803
epoch: 1400, loss: 23.908894366923214, r_sqr: 0.6900616479035429
epoch: 1500, loss: 23.90873804289015, r_sqr: 0.6900411329923608
epoch: 1600, loss: 23.90871433783755, r_sqr: 0.6900324529674866
epoch: 1700, loss: 23.908711226897406, r_sqr: 0.690029151344134
epoch: 1800, loss: 23.908710876248833, r_sqr: 0.6900280037335323
epoch: 1900, loss: 23.908710842591514, r_sqr: 0.6900276378081478


绘制训练集上的损失。

plt.figure()
plt.plot(losses)
plt.title('Loss on Training Set')
plt.xlabel('#epoch')
plt.ylabel('MSE')
plt.show()


绘制测试集上的 R 方。

plt.figure()
plt.plot(r_sqrs)
plt.title('$R^2$ on Testing Set')
plt.xlabel('#epoch')
plt.ylabel('$R^2$')
plt.show()
相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
相关文章
|
3月前
|
机器学习/深度学习 Python
弹性网(Elastic Net)正则化
弹性网(Elastic Net)正则化
|
7月前
|
机器学习/深度学习 存储 计算机视觉
r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现-4
r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现
131 11
|
2月前
|
机器学习/深度学习 Python
【10月更文挑战第1天】弹性网(Elastic Net)正则化
【10月更文挑战第1天】弹性网(Elastic Net)正则化
|
7月前
|
机器学习/深度学习 PyTorch 算法框架/工具
使用PyTorch实现L1, L2和Elastic Net正则化
本文介绍了机器学习中的正则化技术,包括L1、L2和Elastic Net,用于防止过拟合。L1正则化产生稀疏模型,适合特征选择;L2正则化使参数接近零但不为零,减少过拟合。Elastic Net结合L1和L2优点,适用于特征相关情况。在Python的sklearn库中,可使用Lasso、Ridge和ElasticNet类实现这些正则化。此外,文中提供PyTorch代码示例,展示了如何在多层感知机上应用L1、L2和Elastic Net正则化。
103 0
|
7月前
|
机器学习/深度学习 存储 算法
r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现(下)
r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现
|
7月前
|
机器学习/深度学习 并行计算 算法
r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现(上)
r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现
|
7月前
|
机器学习/深度学习 算法 数据可视化
r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现-3
r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现
|
7月前
|
并行计算
r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现-2
r语言中对LASSO回归,Ridge岭回归和弹性网络Elastic Net模型实现
|
7天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
118 55
|
25天前
|
机器学习/深度学习 数据采集 数据可视化
TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤
本文介绍了 TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤,包括数据准备、模型定义、损失函数与优化器选择、模型训练与评估、模型保存与部署,并展示了构建全连接神经网络的具体示例。此外,还探讨了 TensorFlow 的高级特性,如自动微分、模型可视化和分布式训练,以及其在未来的发展前景。
57 5
下一篇
DataWorks