机场航拍图像检测软件(Python+YOLOv5深度学习模型+清新界面)

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 机场航拍图像检测软件(Python+YOLOv5深度学习模型+清新界面)

前言


       机场航拍图像检测是指利用机载摄像机获取机场场区图像,并利用计算机视觉技术对图像进行分析和处理,以实现机场安全、运行和管理的目的。机场航拍图像检测涵盖了航道、跑道、停机坪、航站楼、机库等各个方面,包括飞机起降、滑行、停靠、维修、安检等过程。机场航拍图像检测的技术方法主要包括目标检测、图像分割、特征提取、分类识别等。其中,目标检测是机场航拍图像检测的核心技术,可以通过机器学习、深度学习等方法实现。机场航拍图像检测的应用可以提高机场安全性和运行效率,为机场管理部门提供及时准确的数据支持,也为机场服务企业和航空公司提供更好的服务。

       这里给出博主设计的软件界面,同款的简约风,功能也可以满足图片、视频和摄像头的识别检测,希望大家可以喜欢,初始界面如下图:



       检测飞机时的界面截图(点击图片可放大)如下图,可识别画面中存在的多个飞机,也可开启摄像头或视频检测:



        详细的功能演示效果参见博主的B站视频或下一节的动图演示,觉得不错的朋友敬请点赞、关注加收藏!系统UI界面的设计工作量较大,界面美化更需仔细雕琢,大家有任何建议或意见和可在下方评论交流。


1. 效果演示


       首先我们还是通过动图看一下识别的效果,系统主要实现的功能是对图片、视频和摄像头画面中的航拍图像进行识别,识别的结果可视化显示在界面和图像中,另外提供多个目标的显示选择功能,演示效果如下。

(一)用户注册登录界面

       这里设计了一个登录界面,可以注册账号和密码,然后进行登录。界面还是参考了当前流行的UI设计,左侧是一个LOGO图,右侧输入账号、密码、验证码等等。



(二)选择图片识别

       在系统中可以选择图片文件进行识别,点击图片选择按钮图标选择图片后,显示所有识别的结果,可通过下拉选框查看单个目标的结果。本功能的界面展示如下图所示:



(三)视频识别效果展示

       很多时候我们需要识别一段视频,这里设计了视频选择功能。点击视频按钮可选择待检测的视频,系统会自动解析视频逐帧识别图片中的飞机,并将结果记录在右下角表格中,效果如下图所示:



(四)摄像头检测效果展示

       在真实场景中,我们往往利用设备摄像头获取实时画面,因此本文考虑到此项功能。如下图所示,点击摄像头按钮后系统进入准备状态,系统显示实时画面并开始检测画面,识别结果展示如下图:




2. 机场航拍数据集及训练


       这里我们使用的航拍图像数据集,包括训练数据集708张图片,验证集68张,测试集34张图片,共计810张图片。部分数据集的图像及标注如下图所示:



       每张图像均提供了图像类标记信息,图像中飞机的bounding box,飞机的关键part信息,以及飞机的属性信息,数据集并解压后得到如下的图片。



       以下给出本系统项目的文件目录,其中包含了YOLOv5相关的代码以及界面设计代码,如下图所示。对于训练模型部分只需要关注train.py这个文件,训练用到的数据集、标注文件及配置文件在本项目中已配置完成。

       关于这个项目,我们首先要安装python的依赖库,配置一个Python3.8然后按照requirements.txt里面的依赖装环境就可以运行了。

python
#请按照给定的python版本配置环境,否则可能会因依赖不兼容而出错
conda create -n env_rec python=3.8
#激活环境
activate env_rec
#使用pip安装所需的以来,可通过requirement.txt
pip install -r requirements.txt


       到这,深度学习所需的环境和依赖包就准备好了,现在对整个代码目录做一个介绍:



       data:主要是存放一些超参数的配置文件(这些文件(yaml文件)是用来配置训练集和测试集还有验证集的路径的,其中还包括目标检测的种类数和种类的名称);

       models:里面主要是一些网络构建的配置文件和函数,其中包含了该项目的四个不同的版本,分别为是s、m、l、x。从名字就可以看出,这几个版本的大小。他们的检测测度分别都是从快到慢,但是精确度分别是从低到高。如果训练自己的数据集,需要修改这里面相对应的yaml文件来训练自己模型。

       utils:存放的是工具类的函数,里面有loss函数,metrics函数,plots函数等等。

       weights:放置训练好的权重参数。

       testPicture.py, testVideo.py:利用训练好的权重参数进行目标检测,可以进行图像、视频和摄像头的检测。

       train.py:训练自己的数据集的函数。

       requirements.txt:这是一个文本文件,里面写着使用yolov5项目的环境依赖包的一些版本,可以利用该文本导入相应版本的包。

       以上就是本项目代码的整体介绍。我们训练和测试自己的数据集基本就是利用到如上的代码,这里可以运行train.py文件训练目标检测模型,以下是在终端运行训练的截图。



       在深度学习中,我们通常通过损失函数下降的曲线来观察模型训练的情况。而YOLOv5训练时主要包含三个方面的损失:矩形框损失(box_loss)、置信度损失(obj_loss)和分类损失(cls_loss),在训练结束后,我们也可以在logs目录下找到生成对若干训练过程统计图。下图为博主训练飞机识别的模型训练曲线图。



       一般我们会接触到两个指标,分别是召回率recall和精度precision,两个指标p和r都是简单地从一个角度来判断模型的好坏,均是介于0到1之间的数值,其中接近于1表示模型的性能越好,接近于0表示模型的性能越差,为了综合评价目标检测的性能,一般采用均值平均密度map来进一步评估模型的好坏。我们通过设定不同的置信度的阈值,可以得到在模型在不同的阈值下所计算出的p值和r值,一般情况下,p值和r值是负相关的,绘制出来可以得到如下图所示的曲线,其中曲线的面积我们称AP,目标检测模型中每种目标可计算出一个AP值,对所有的AP值求平均则可以得到模型的mAP值,以本文为例,我们可以计算佩戴安全帽和未佩戴安全帽的两个目标的AP值,我们对两组AP值求平均,可以得到整个模型的mAP值,该值越接近1表示模型的性能越好。关于更加学术的定义大家可以在知乎或者csdn上自行查阅,以我们本次训练的模型为例,在模型结束之后你会找到图像,分别表示我们模型在验证集上的召回率、准确率和均值平均密度。



       以PR-curve为例,可以看到我们的模型在验证集上的均值平均准确率为0.938。


3. 机场航拍图像检测识别


       在训练完成后得到最佳模型,接下来我们将帧图像输入到这个网络进行预测,从而得到预测结果,预测方法(predict.py)部分的代码如下所示:

python
def predict(img):
    img = torch.from_numpy(img).to(device)
    img = img.half() if half else img.float()
    img /= 255.0
    if img.ndimension() == 3:
        img = img.unsqueeze(0)
    t1 = time_synchronized()
    pred = model(img, augment=False)[0]
    pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes,
                               agnostic=opt.agnostic_nms)
    t2 = time_synchronized()
    InferNms = round((t2 - t1), 2)
    return pred, InferNms


       得到预测结果我们便可以将帧图像中的飞机框出,然后在图片上用opencv绘图操作,输出飞机的预测分数。以下是读取一个飞机图片并进行检测的脚本,首先将图片数据进行预处理后送predict进行检测,然后计算标记框的位置并在图中标注出来。

python
if __name__ == '__main__':
    img_path = "./UI_rec/test_/airport_136_jpg"
    image = cv_imread(img_path)
    image = cv2.resize(image, (850, 500))
    img0 = image.copy()
    img = letterbox(img0, new_shape=imgsz)[0]
    img = np.stack(img, 0)
    img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
    img = np.ascontiguousarray(img)
    pred, useTime = predict(img)
    det = pred[0]
    p, s, im0 = None, '', img0
    if det is not None and len(det):  # 如果有检测信息则进入
        det[:, :4] = scale_coords(img.shape[1:], det[:, :4], im0.shape).round()  # 把图像缩放至im0的尺寸
        number_i = 0  # 类别预编号
        detInfo = []
        for *xyxy, conf, cls in reversed(det):  # 遍历检测信息
            c1, c2 = (int(xyxy[0]), int(xyxy[1])), (int(xyxy[2]), int(xyxy[3]))
            # 将检测信息添加到字典中
            detInfo.append([names[int(cls)], [c1[0], c1[1], c2[0], c2[1]], '%.2f' % conf])
            number_i += 1  # 编号数+1
            label = '%s %.2f' % (names[int(cls)], conf)
            # 画出检测到的目标物
            plot_one_box(image, xyxy, label=label, color=colors[int(cls)])
    # 实时显示检测画面
    cv2.imshow('Stream', image)
    # if cv2.waitKey(1) & 0xFF == ord('q'):
    #     break
    c = cv2.waitKey(0) & 0xff


       执行得到的结果如下图所示,图中飞机的种类和置信度值都标注出来了,预测速度较快。基于此模型我们可以将其设计成一个带有界面的系统,在界面上选择图片、视频或摄像头然后调用模型进行检测。



       博主对整个系统进行了详细测试,最终开发出一版流畅得到清新界面,就是博文演示部分的展示,完整的UI界面、测试图片视频、代码文件,以及Python离线依赖包(方便安装运行,也可自行配置环境),均已打包上传,感兴趣的朋友可以通过下载链接获取。


相关文章
|
4月前
|
机器学习/深度学习 算法 定位技术
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现裂缝的检测识别(C#代码UI界面版)
本项目基于YOLOv8模型与C#界面,结合Baumer工业相机,实现裂缝的高效检测识别。支持图像、视频及摄像头输入,具备高精度与实时性,适用于桥梁、路面、隧道等多种工业场景。
459 27
|
1月前
|
传感器 运维 前端开发
Python离群值检测实战:使用distfit库实现基于分布拟合的异常检测
本文解析异常(anomaly)与新颖性(novelty)检测的本质差异,结合distfit库演示基于概率密度拟合的单变量无监督异常检测方法,涵盖全局、上下文与集体离群值识别,助力构建高可解释性模型。
253 10
Python离群值检测实战:使用distfit库实现基于分布拟合的异常检测
|
8月前
|
运维 监控 算法
时间序列异常检测:MSET-SPRT组合方法的原理和Python代码实现
MSET-SPRT是一种结合多元状态估计技术(MSET)与序贯概率比检验(SPRT)的混合框架,专为高维度、强关联数据流的异常检测设计。MSET通过历史数据建模估计系统预期状态,SPRT基于统计推断判定偏差显著性,二者协同实现精准高效的异常识别。本文以Python为例,展示其在模拟数据中的应用,证明其在工业监控、设备健康管理及网络安全等领域的可靠性与有效性。
938 13
时间序列异常检测:MSET-SPRT组合方法的原理和Python代码实现
|
4月前
|
监控 编译器 Python
如何利用Python杀进程并保持驻留后台检测
本教程介绍如何使用Python编写进程监控与杀进程脚本,结合psutil库实现后台驻留、定时检测并强制终止指定进程。内容涵盖基础杀进程、多进程处理、自动退出机制、管理员权限启动及图形界面设计,并提供将脚本打包为exe的方法,适用于需持续清理顽固进程的场景。
|
8月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
452 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
9月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
840 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
|
10月前
|
监控 网络安全 开发者
Python中的Paramiko与FTP文件夹及文件检测技巧
通过使用 Paramiko 和 FTP 库,开发者可以方便地检测远程服务器上的文件和文件夹是否存在。Paramiko 提供了通过 SSH 协议进行远程文件管理的能力,而 `ftplib` 则提供了通过 FTP 协议进行文件传输和管理的功能。通过理解和应用这些工具,您可以更加高效地管理和监控远程服务器上的文件系统。
311 20
|
9月前
|
监控 Java 计算机视觉
Python图像处理中的内存泄漏问题:原因、检测与解决方案
在Python图像处理中,内存泄漏是常见问题,尤其在处理大图像时。本文探讨了内存泄漏的原因(如大图像数据、循环引用、外部库使用等),并介绍了检测工具(如memory_profiler、objgraph、tracemalloc)和解决方法(如显式释放资源、避免循环引用、选择良好内存管理的库)。通过具体代码示例,帮助开发者有效应对内存泄漏挑战。
438 1
|
10月前
|
机器学习/深度学习 监控 算法
基于yolov4深度学习网络的排队人数统计系统matlab仿真,带GUI界面
本项目基于YOLOv4深度学习网络,利用MATLAB 2022a实现排队人数统计的算法仿真。通过先进的计算机视觉技术,系统能自动、准确地检测和统计监控画面中的人数,适用于银行、车站等场景,优化资源分配和服务管理。核心程序包含多个回调函数,用于处理用户输入及界面交互,确保系统的高效运行。仿真结果无水印,操作步骤详见配套视频。
285 18

热门文章

最新文章

推荐镜像

更多