机场航拍图像检测软件(Python+YOLOv5深度学习模型+清新界面)

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,5000CU*H 3个月
模型训练 PAI-DLC,5000CU*H 3个月
简介: 机场航拍图像检测软件(Python+YOLOv5深度学习模型+清新界面)

前言


       机场航拍图像检测是指利用机载摄像机获取机场场区图像,并利用计算机视觉技术对图像进行分析和处理,以实现机场安全、运行和管理的目的。机场航拍图像检测涵盖了航道、跑道、停机坪、航站楼、机库等各个方面,包括飞机起降、滑行、停靠、维修、安检等过程。机场航拍图像检测的技术方法主要包括目标检测、图像分割、特征提取、分类识别等。其中,目标检测是机场航拍图像检测的核心技术,可以通过机器学习、深度学习等方法实现。机场航拍图像检测的应用可以提高机场安全性和运行效率,为机场管理部门提供及时准确的数据支持,也为机场服务企业和航空公司提供更好的服务。

       这里给出博主设计的软件界面,同款的简约风,功能也可以满足图片、视频和摄像头的识别检测,希望大家可以喜欢,初始界面如下图:



       检测飞机时的界面截图(点击图片可放大)如下图,可识别画面中存在的多个飞机,也可开启摄像头或视频检测:



        详细的功能演示效果参见博主的B站视频或下一节的动图演示,觉得不错的朋友敬请点赞、关注加收藏!系统UI界面的设计工作量较大,界面美化更需仔细雕琢,大家有任何建议或意见和可在下方评论交流。


1. 效果演示


       首先我们还是通过动图看一下识别的效果,系统主要实现的功能是对图片、视频和摄像头画面中的航拍图像进行识别,识别的结果可视化显示在界面和图像中,另外提供多个目标的显示选择功能,演示效果如下。

(一)用户注册登录界面

       这里设计了一个登录界面,可以注册账号和密码,然后进行登录。界面还是参考了当前流行的UI设计,左侧是一个LOGO图,右侧输入账号、密码、验证码等等。



(二)选择图片识别

       在系统中可以选择图片文件进行识别,点击图片选择按钮图标选择图片后,显示所有识别的结果,可通过下拉选框查看单个目标的结果。本功能的界面展示如下图所示:



(三)视频识别效果展示

       很多时候我们需要识别一段视频,这里设计了视频选择功能。点击视频按钮可选择待检测的视频,系统会自动解析视频逐帧识别图片中的飞机,并将结果记录在右下角表格中,效果如下图所示:



(四)摄像头检测效果展示

       在真实场景中,我们往往利用设备摄像头获取实时画面,因此本文考虑到此项功能。如下图所示,点击摄像头按钮后系统进入准备状态,系统显示实时画面并开始检测画面,识别结果展示如下图:




2. 机场航拍数据集及训练


       这里我们使用的航拍图像数据集,包括训练数据集708张图片,验证集68张,测试集34张图片,共计810张图片。部分数据集的图像及标注如下图所示:



       每张图像均提供了图像类标记信息,图像中飞机的bounding box,飞机的关键part信息,以及飞机的属性信息,数据集并解压后得到如下的图片。



       以下给出本系统项目的文件目录,其中包含了YOLOv5相关的代码以及界面设计代码,如下图所示。对于训练模型部分只需要关注train.py这个文件,训练用到的数据集、标注文件及配置文件在本项目中已配置完成。

       关于这个项目,我们首先要安装python的依赖库,配置一个Python3.8然后按照requirements.txt里面的依赖装环境就可以运行了。

python
#请按照给定的python版本配置环境,否则可能会因依赖不兼容而出错
conda create -n env_rec python=3.8
#激活环境
activate env_rec
#使用pip安装所需的以来,可通过requirement.txt
pip install -r requirements.txt


       到这,深度学习所需的环境和依赖包就准备好了,现在对整个代码目录做一个介绍:



       data:主要是存放一些超参数的配置文件(这些文件(yaml文件)是用来配置训练集和测试集还有验证集的路径的,其中还包括目标检测的种类数和种类的名称);

       models:里面主要是一些网络构建的配置文件和函数,其中包含了该项目的四个不同的版本,分别为是s、m、l、x。从名字就可以看出,这几个版本的大小。他们的检测测度分别都是从快到慢,但是精确度分别是从低到高。如果训练自己的数据集,需要修改这里面相对应的yaml文件来训练自己模型。

       utils:存放的是工具类的函数,里面有loss函数,metrics函数,plots函数等等。

       weights:放置训练好的权重参数。

       testPicture.py, testVideo.py:利用训练好的权重参数进行目标检测,可以进行图像、视频和摄像头的检测。

       train.py:训练自己的数据集的函数。

       requirements.txt:这是一个文本文件,里面写着使用yolov5项目的环境依赖包的一些版本,可以利用该文本导入相应版本的包。

       以上就是本项目代码的整体介绍。我们训练和测试自己的数据集基本就是利用到如上的代码,这里可以运行train.py文件训练目标检测模型,以下是在终端运行训练的截图。



       在深度学习中,我们通常通过损失函数下降的曲线来观察模型训练的情况。而YOLOv5训练时主要包含三个方面的损失:矩形框损失(box_loss)、置信度损失(obj_loss)和分类损失(cls_loss),在训练结束后,我们也可以在logs目录下找到生成对若干训练过程统计图。下图为博主训练飞机识别的模型训练曲线图。



       一般我们会接触到两个指标,分别是召回率recall和精度precision,两个指标p和r都是简单地从一个角度来判断模型的好坏,均是介于0到1之间的数值,其中接近于1表示模型的性能越好,接近于0表示模型的性能越差,为了综合评价目标检测的性能,一般采用均值平均密度map来进一步评估模型的好坏。我们通过设定不同的置信度的阈值,可以得到在模型在不同的阈值下所计算出的p值和r值,一般情况下,p值和r值是负相关的,绘制出来可以得到如下图所示的曲线,其中曲线的面积我们称AP,目标检测模型中每种目标可计算出一个AP值,对所有的AP值求平均则可以得到模型的mAP值,以本文为例,我们可以计算佩戴安全帽和未佩戴安全帽的两个目标的AP值,我们对两组AP值求平均,可以得到整个模型的mAP值,该值越接近1表示模型的性能越好。关于更加学术的定义大家可以在知乎或者csdn上自行查阅,以我们本次训练的模型为例,在模型结束之后你会找到图像,分别表示我们模型在验证集上的召回率、准确率和均值平均密度。



       以PR-curve为例,可以看到我们的模型在验证集上的均值平均准确率为0.938。


3. 机场航拍图像检测识别


       在训练完成后得到最佳模型,接下来我们将帧图像输入到这个网络进行预测,从而得到预测结果,预测方法(predict.py)部分的代码如下所示:

python
def predict(img):
    img = torch.from_numpy(img).to(device)
    img = img.half() if half else img.float()
    img /= 255.0
    if img.ndimension() == 3:
        img = img.unsqueeze(0)
    t1 = time_synchronized()
    pred = model(img, augment=False)[0]
    pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes,
                               agnostic=opt.agnostic_nms)
    t2 = time_synchronized()
    InferNms = round((t2 - t1), 2)
    return pred, InferNms


       得到预测结果我们便可以将帧图像中的飞机框出,然后在图片上用opencv绘图操作,输出飞机的预测分数。以下是读取一个飞机图片并进行检测的脚本,首先将图片数据进行预处理后送predict进行检测,然后计算标记框的位置并在图中标注出来。

python
if __name__ == '__main__':
    img_path = "./UI_rec/test_/airport_136_jpg"
    image = cv_imread(img_path)
    image = cv2.resize(image, (850, 500))
    img0 = image.copy()
    img = letterbox(img0, new_shape=imgsz)[0]
    img = np.stack(img, 0)
    img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
    img = np.ascontiguousarray(img)
    pred, useTime = predict(img)
    det = pred[0]
    p, s, im0 = None, '', img0
    if det is not None and len(det):  # 如果有检测信息则进入
        det[:, :4] = scale_coords(img.shape[1:], det[:, :4], im0.shape).round()  # 把图像缩放至im0的尺寸
        number_i = 0  # 类别预编号
        detInfo = []
        for *xyxy, conf, cls in reversed(det):  # 遍历检测信息
            c1, c2 = (int(xyxy[0]), int(xyxy[1])), (int(xyxy[2]), int(xyxy[3]))
            # 将检测信息添加到字典中
            detInfo.append([names[int(cls)], [c1[0], c1[1], c2[0], c2[1]], '%.2f' % conf])
            number_i += 1  # 编号数+1
            label = '%s %.2f' % (names[int(cls)], conf)
            # 画出检测到的目标物
            plot_one_box(image, xyxy, label=label, color=colors[int(cls)])
    # 实时显示检测画面
    cv2.imshow('Stream', image)
    # if cv2.waitKey(1) & 0xFF == ord('q'):
    #     break
    c = cv2.waitKey(0) & 0xff


       执行得到的结果如下图所示,图中飞机的种类和置信度值都标注出来了,预测速度较快。基于此模型我们可以将其设计成一个带有界面的系统,在界面上选择图片、视频或摄像头然后调用模型进行检测。



       博主对整个系统进行了详细测试,最终开发出一版流畅得到清新界面,就是博文演示部分的展示,完整的UI界面、测试图片视频、代码文件,以及Python离线依赖包(方便安装运行,也可自行配置环境),均已打包上传,感兴趣的朋友可以通过下载链接获取。


相关文章
|
3天前
|
机器学习/深度学习 存储 算法
使用Python实现深度学习模型:强化学习与深度Q网络(DQN)
使用Python实现深度学习模型:强化学习与深度Q网络(DQN)
18 2
|
19小时前
|
机器学习/深度学习 算法 Python
使用Python实现深度学习模型:元学习与模型无关优化(MAML)
使用Python实现深度学习模型:元学习与模型无关优化(MAML)
8 0
使用Python实现深度学习模型:元学习与模型无关优化(MAML)
|
4天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现深度学习模型:图神经网络(GNN)
使用Python实现深度学习模型:图神经网络(GNN)
12 1
|
1天前
|
机器学习/深度学习 算法 Python
使用Python实现深度学习模型:演化策略与遗传算法
使用Python实现深度学习模型:演化策略与遗传算法
5 0
|
2天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
使用Python实现深度学习模型:策略梯度方法
使用Python实现深度学习模型:策略梯度方法
4 0
|
4天前
|
机器学习/深度学习 网络协议 Python
Python Socket深度学习分享
Python Socket深度学习分享
|
2天前
|
机器学习/深度学习 数据采集 自动驾驶
深度学习在图像识别中的应用与挑战
随着人工智能技术的飞速发展,深度学习已成为推动现代科技进步的核心力量之一。特别是在图像识别领域,深度学习模型通过模拟人脑处理视觉信息的方式,显著提高了识别的准确性和效率。本文将探讨深度学习在图像识别中的关键技术应用,分析面临的主要挑战,并展望未来发展趋势。
|
2天前
|
机器学习/深度学习 算法 自动驾驶
深度学习在图像识别中的应用与挑战
本文深入探讨了深度学习技术在图像识别领域的应用及其面临的主要挑战。通过分析最新的科研数据和实验结果,本文揭示了深度学习模型如何超越传统算法,实现更高的准确性和效率。同时,文章也指出了当前深度学习在图像识别中存在的问题,如过拟合、数据偏差和计算资源需求等,并提出了可能的解决策略。最后,本文对未来深度学习技术的发展方向进行了展望。
|
1天前
|
机器学习/深度学习 数据采集 边缘计算
探索深度学习在自然语言处理中的应用与挑战
【6月更文挑战第29天】 随着人工智能技术的飞速发展,深度学习已经成为推动自然语言处理(NLP)领域革新的核心动力。本文旨在深入探讨深度学习技术在NLP中的广泛应用及其面临的主要挑战。文章首先概述了深度学习在NLP领域的应用现状,包括语音识别、机器翻译、情感分析等方面。随后,详细讨论了在实现高效NLP系统过程中遇到的关键挑战,如数据集的偏见问题、模型的可解释性以及资源消耗等。最后,文章展望了未来深度学习技术在NLP领域的发展趋势和潜在解决方案。
|
1天前
|
机器学习/深度学习 数据采集 人工智能
深度学习在自然语言处理中的应用
【6月更文挑战第29天】探索神经网络、词嵌入、序列模型与注意力机制在文本理解、生成和交互中的应用。从数据预处理到模型优化,深度学习已广泛用于文本分类、情感分析、机器翻译等任务,未来趋势包括跨模态学习、知识图谱、可解释性和移动端部署。随着技术发展,NLP将迎来更多创新。