《Python数据科学实践指南》——导读

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介:


image

前 言

为什么要写这本书

我接触大数据技术的时间算是比较早的,四五年前当大数据这个词火遍互联网的时候,我就已经在实验室里学习编程及算法的知识。那个时候我一心想要做学术,每天阅读大量的英文文献,主要兴趣更多的是在机器人和人工智能上。研究生毕业时我本来想实现早先的愿望,继续攻读博士学位,不过思来想去觉得不应该错过大数据这个机会,所以毅然决定投入大数据行业中。

在工作之初,市面上已经存在一些介绍大数据相关技术的权威著作,其中很多还是很底层的或特定领域的专著。但即使是我这种自诩为“学院派”的人看这些书,头脑也会经常开小差。而大数据相关的技术又特别庞杂,包括计算框架、网络爬虫、机器学习算法、编程语言、数据库、文本分析、数据流水线的架构,甚至还包括前端可视化等众多方面,只有对它们都有涉猎,才能更好地胜任相关的工作。所以我读过很多的相关图书,这确实为我以后的工作打下了坚实的基础,不过随着工作内容的增加,以及新同事的到来,更多的问题相继涌现。首当其冲的就是,并不是每个人都有足够的基础来阅读这些专业著作,而且每个人的情况各不相同,有的是编程基础差,有的是数学基础差,有的是英语基础差,这也导致我的这套学习方法难以推广开来。所以我想写一本关于大数据技术的手册,其目的并不是为读者讲明白所有技术背后的原理,而是告诉读者某项技术可以用于哪些工作中,哪些工作需要哪些工具。

读完这本手册,可以帮助读者建立一个相对完整的大数据生态的概念,其中所讲的每一个工具都值得读者进行更深入的研究(你也可以像我一样,对其中的两三项进行非常深入的研究),也许在研究过程中,你会成为该领域的专家。如果现在正在看这本书的你是一位技术决策者,那么我希望本书的介绍能帮助你下定决心使用其中的某项技术,比如写作全书的Python语言就是一门非常好的数据处理语言,它能快速编码,且具有强大的字符串处理能力,拥有大量成熟的大数据类库,这些都使Python成为数据科学领域无可争议的No. 1语言;或许你的团队可以仅用Python编写大规模分布式爬虫程序(虽然本书介绍的是单机的简化版)就能大幅度地提升工作的效率。Scrapy可能是爬虫领域最有名的框架了,你也可以像我一样实现属于你自己的版本。当然这本书也是一本Python入门书,所以读者无须担心阅读门槛,你可以从零基础开始学习,并体验整个学习过程所带来的愉悦。

目 录 

[第0章 发现、出发
0.1 何谓数据科学 ](https://yq.aliyun.com/articles/119372/)
0.1.1 海量的数据与科学的方法
0.1.2 数据科学并不是新概念
0.1.3 数据科学是一个系统工程
0.2 如何成为数据科学家
0.3 为什么是Python
0.4 一个简单的例子
[第1章 Python介绍
1.1 Python的版本之争 ](https://yq.aliyun.com/articles/119389/)
1.2 Python解释器
1.2.1 Mac OS X系统
1.2.2 Linux系统
1.2.3 Windows系统
1.3 第一段Python程序
1.4 使用Python shell调试程序
[第2章 Python基础知识
2.1 应当掌握的基础知识 ](https://yq.aliyun.com/articles/119418/)
2.1.1 基础数据类型
2.1.2 变量和赋值
2.1.3 操作符及表达式
2.1.4 文本编辑器
2.2 字符串
2.3 获取键盘输入
2.4 流程控制
2.4.1 条件判断
2.4.2 循环
2.4.3 缩进、空白和注释

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
3月前
|
机器学习/深度学习 数据可视化 数据处理
从基础到进阶:探索Python在数据科学中的应用
【10月更文挑战第18天】从基础到进阶:探索Python在数据科学中的应用
52 1
|
3月前
|
机器学习/深度学习 数据采集 数据可视化
Python 数据分析:从零开始构建你的数据科学项目
【10月更文挑战第9天】Python 数据分析:从零开始构建你的数据科学项目
67 2
|
4月前
|
机器学习/深度学习 数据可视化 数据挖掘
探索Python的奥秘:数据科学中的利器
本文将深入探讨Python编程语言在数据科学领域的强大应用。通过简洁易懂的语言,我们将解析Python的核心概念、流行库以及在实际项目中的应用,帮助您理解为何Python成为数据科学家的首选工具。
68 0
|
2月前
|
数据采集 数据可视化 数据处理
Python数据科学:Pandas库入门与实践
Python数据科学:Pandas库入门与实践
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
Python在数据科学中的应用:从入门到实践
本文旨在为读者提供一个Python在数据科学领域应用的全面概览。我们将从Python的基础语法开始,逐步深入到数据处理、分析和可视化的高级技术。文章不仅涵盖了Python中常用的数据科学库,如NumPy、Pandas和Matplotlib,还探讨了机器学习库Scikit-learn的使用。通过实际案例分析,本文将展示如何利用Python进行数据清洗、特征工程、模型训练和结果评估。此外,我们还将探讨Python在大数据处理中的应用,以及如何通过集成学习和深度学习技术来提升数据分析的准确性和效率。
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据科学实战:从Pandas到机器学习
Python数据科学实战:从Pandas到机器学习
|
2月前
|
机器学习/深度学习 数据可视化 数据处理
Python数据科学:从基础到实战
Python数据科学:从基础到实战
42 1
|
2月前
|
机器学习/深度学习 数据可视化 数据处理
Python在数据科学中的应用###
本文探讨了Python语言在数据科学领域的广泛应用及其重要性。通过分析Python的简洁语法、强大的库支持和跨平台特性,阐述了为何Python成为数据科学家的首选工具。文章还介绍了Python在数据处理、分析和可视化方面的具体应用实例,展示了其在提升工作效率和推动科学研究方面的巨大潜力。最后,讨论了未来Python在数据科学领域的发展趋势和挑战。 ###
|
2月前
|
机器学习/深度学习 分布式计算 数据可视化
Python在数据科学中的应用与挑战
本文探讨了Python编程语言在数据科学领域的广泛应用及其面临的主要挑战。Python因其简洁的语法、强大的库支持和活跃的社区,已成为数据科学家的首选工具。然而,随着数据量的激增和复杂性的增加,Python也面临着性能瓶颈、内存管理等问题。本文将通过具体案例分析,展示Python在数据处理、分析和可视化方面的优势,同时讨论如何克服其在大规模数据处理中的局限性,为读者提供实用的解决方案和优化建议。
|
2月前
|
JSON 测试技术 持续交付
自动化测试与脚本编写:Python实践指南
自动化测试与脚本编写:Python实践指南
47 1