《Python数据科学实践指南》——导读

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:


image

前 言

为什么要写这本书

我接触大数据技术的时间算是比较早的,四五年前当大数据这个词火遍互联网的时候,我就已经在实验室里学习编程及算法的知识。那个时候我一心想要做学术,每天阅读大量的英文文献,主要兴趣更多的是在机器人和人工智能上。研究生毕业时我本来想实现早先的愿望,继续攻读博士学位,不过思来想去觉得不应该错过大数据这个机会,所以毅然决定投入大数据行业中。

在工作之初,市面上已经存在一些介绍大数据相关技术的权威著作,其中很多还是很底层的或特定领域的专著。但即使是我这种自诩为“学院派”的人看这些书,头脑也会经常开小差。而大数据相关的技术又特别庞杂,包括计算框架、网络爬虫、机器学习算法、编程语言、数据库、文本分析、数据流水线的架构,甚至还包括前端可视化等众多方面,只有对它们都有涉猎,才能更好地胜任相关的工作。所以我读过很多的相关图书,这确实为我以后的工作打下了坚实的基础,不过随着工作内容的增加,以及新同事的到来,更多的问题相继涌现。首当其冲的就是,并不是每个人都有足够的基础来阅读这些专业著作,而且每个人的情况各不相同,有的是编程基础差,有的是数学基础差,有的是英语基础差,这也导致我的这套学习方法难以推广开来。所以我想写一本关于大数据技术的手册,其目的并不是为读者讲明白所有技术背后的原理,而是告诉读者某项技术可以用于哪些工作中,哪些工作需要哪些工具。

读完这本手册,可以帮助读者建立一个相对完整的大数据生态的概念,其中所讲的每一个工具都值得读者进行更深入的研究(你也可以像我一样,对其中的两三项进行非常深入的研究),也许在研究过程中,你会成为该领域的专家。如果现在正在看这本书的你是一位技术决策者,那么我希望本书的介绍能帮助你下定决心使用其中的某项技术,比如写作全书的Python语言就是一门非常好的数据处理语言,它能快速编码,且具有强大的字符串处理能力,拥有大量成熟的大数据类库,这些都使Python成为数据科学领域无可争议的No. 1语言;或许你的团队可以仅用Python编写大规模分布式爬虫程序(虽然本书介绍的是单机的简化版)就能大幅度地提升工作的效率。Scrapy可能是爬虫领域最有名的框架了,你也可以像我一样实现属于你自己的版本。当然这本书也是一本Python入门书,所以读者无须担心阅读门槛,你可以从零基础开始学习,并体验整个学习过程所带来的愉悦。

目 录 

[第0章 发现、出发
0.1 何谓数据科学 ](https://yq.aliyun.com/articles/119372/)
0.1.1 海量的数据与科学的方法
0.1.2 数据科学并不是新概念
0.1.3 数据科学是一个系统工程
0.2 如何成为数据科学家
0.3 为什么是Python
0.4 一个简单的例子
[第1章 Python介绍
1.1 Python的版本之争 ](https://yq.aliyun.com/articles/119389/)
1.2 Python解释器
1.2.1 Mac OS X系统
1.2.2 Linux系统
1.2.3 Windows系统
1.3 第一段Python程序
1.4 使用Python shell调试程序
[第2章 Python基础知识
2.1 应当掌握的基础知识 ](https://yq.aliyun.com/articles/119418/)
2.1.1 基础数据类型
2.1.2 变量和赋值
2.1.3 操作符及表达式
2.1.4 文本编辑器
2.2 字符串
2.3 获取键盘输入
2.4 流程控制
2.4.1 条件判断
2.4.2 循环
2.4.3 缩进、空白和注释

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
2月前
|
设计模式 SQL 人工智能
Python设计模式:从代码复用到系统架构的实践指南
本文以Python为实现语言,深入解析23种经典设计模式的核心思想与实战技巧。通过真实项目案例,展示设计模式在软件开发中的结构化思维价值,涵盖创建型、结构型、行为型三大类别,并结合Python动态语言特性,探讨模式的最佳应用场景与实现方式,帮助开发者写出更清晰、易维护的高质量代码。
99 1
|
2月前
|
设计模式 人工智能 算法
Python设计模式:从代码复用到系统架构的实践指南
本文探讨了电商系统中因支付方式扩展导致代码臃肿的问题,引出设计模式作为解决方案。通过工厂模式、策略模式、单例模式等经典设计,实现代码解耦与系统扩展性提升。结合Python语言特性,展示了模块化、装饰器、适配器等模式的实战应用,并延伸至AI时代的设计创新,帮助开发者构建高内聚、低耦合、易维护的软件系统。
268 0
|
3月前
|
监控 大数据 API
Python 技术员实践指南:从项目落地到技术优化
本内容涵盖Python开发的实战项目、技术攻关与工程化实践,包括自动化脚本(日志分析系统)和Web后端(轻量化API服务)两大项目类型。通过使用正则表达式、Flask框架等技术,解决日志分析效率低与API服务性能优化等问题。同时深入探讨内存泄漏排查、CPU瓶颈优化,并提供团队协作规范与代码审查流程。延伸至AI、大数据及DevOps领域,如商品推荐系统、PySpark数据处理和Airflow任务编排,助力开发者全面提升从编码到架构的能力,积累高并发与大数据场景下的实战经验。
Python 技术员实践指南:从项目落地到技术优化
|
11月前
|
机器学习/深度学习 数据可视化 数据处理
从基础到进阶:探索Python在数据科学中的应用
【10月更文挑战第18天】从基础到进阶:探索Python在数据科学中的应用
133 1
|
11月前
|
机器学习/深度学习 数据采集 数据可视化
Python 数据分析:从零开始构建你的数据科学项目
【10月更文挑战第9天】Python 数据分析:从零开始构建你的数据科学项目
214 2
|
6月前
|
机器学习/深度学习 数据可视化 TensorFlow
Python 高级编程与实战:深入理解数据科学与机器学习
本文深入探讨了Python在数据科学与机器学习中的应用,介绍了pandas、numpy、matplotlib等数据科学工具,以及scikit-learn、tensorflow、keras等机器学习库。通过实战项目,如数据可视化和鸢尾花数据集分类,帮助读者掌握这些技术。最后提供了进一步学习资源,助力提升Python编程技能。
|
6月前
|
机器学习/深度学习 自然语言处理 TensorFlow
使用Python和DeepSeek进行联网搜索的实践指南
本文介绍如何使用Python和假设的高性能深度学习工具包DeepSeek进行联网搜索,并通过实际案例展示其应用过程。首先,准备环境并安装依赖库(如Python 3.x、pip、DeepSeek、requests和BeautifulSoup4)。接着,讲解了DeepSeek的功能及其在图像分类、实体识别等任务中的应用。通过联网搜索抓取数据并进行预处理后,使用TensorFlow和Keras构建和训练CNN模型。
664 3
|
6月前
|
机器学习/深度学习 数据可视化 算法
Python 高级编程与实战:深入理解数据科学与机器学习
在前几篇文章中,我们探讨了 Python 的基础语法、面向对象编程、函数式编程、元编程、性能优化和调试技巧。本文将深入探讨 Python 在数据科学和机器学习中的应用,并通过实战项目帮助你掌握这些技术。
|
10月前
|
机器学习/深度学习 数据采集 数据可视化
Python在数据科学中的应用:从入门到实践
本文旨在为读者提供一个Python在数据科学领域应用的全面概览。我们将从Python的基础语法开始,逐步深入到数据处理、分析和可视化的高级技术。文章不仅涵盖了Python中常用的数据科学库,如NumPy、Pandas和Matplotlib,还探讨了机器学习库Scikit-learn的使用。通过实际案例分析,本文将展示如何利用Python进行数据清洗、特征工程、模型训练和结果评估。此外,我们还将探讨Python在大数据处理中的应用,以及如何通过集成学习和深度学习技术来提升数据分析的准确性和效率。
|
10月前
|
数据采集 数据可视化 数据处理
Python数据科学:Pandas库入门与实践
Python数据科学:Pandas库入门与实践

推荐镜像

更多