基于深度学习的安全帽检测系统(YOLOv5清新界面版,Python代码)

简介: 基于深度学习的安全帽检测系统(YOLOv5清新界面版,Python代码)

前言


       近年来,随着计算机视觉的飞速发展,越来越多的目标检测算法被应用到生活中,对人体安全的研究尤为有价值。建筑业是劳动密集型行业,工作环境复杂,安全事故频发。据《国家统计年鉴》统计,我国建筑业每年发生的事故数量高达600起,每年死亡人数超过700人。坠落的物体是最致命的,研究表明,所有建筑工人因脑外伤而死亡的人数中有24%是由高空物体坠落造成的。由于它直接威胁到工人的头部,而头部是最重要的身体部位,因此头盔佩戴检测在现实生活场景中具有重要意义。

       计算机视觉的快速发展应用在各个方面,具有广阔的前景,尤其是在安全工程方面。在建筑工地,头盔是保护工人生命的重要工具,而实际上,由于没有戴头盔,事故时有发生。为了解决这个问题,基于深度学习的安全帽检测系统以最及时的方式进行告警,同时最大限度降低误报和漏报现象,极大的节约了生产成本,提高了工作效率。

       这里给出博主设计的软件界面,同款的简约风,功能也可以满足图片、视频和摄像头的识别检测,希望大家可以喜欢,初始界面如下图:



       检测安全帽时的界面截图(点击图片可放大)如下图,可识别画面中存在的多个目标,也可开启摄像头或视频检测:



        详细的功能演示效果参见博主的B站视频或下一节的动图演示,觉得不错的朋友敬请点赞、关注加收藏!系统UI界面的设计工作量较大,界面美化更需仔细雕琢,大家有任何建议或意见和可在下方评论交流。


1. 效果演示


       首先我们还是通过动图看一下识别安全帽的效果,系统主要实现的功能是对图片、视频和摄像头画面中的安全帽属性进行识别,识别的结果可视化显示在界面和图像中,另外提供多个安全帽的显示选择功能,演示效果如下。

(一)用户注册登录界面

       这里设计了一个登录界面,可以注册账号和密码,然后进行登录。界面还是参考了当前流行的UI设计,左侧是一个头盔的LOGO图,右侧输入账号、密码、验证码等等。



(二)安全帽图片识别

       系统允许选择图片文件进行识别,点击图片选择按钮图标选择图片后,显示所有安全帽识别的结果,可通过下拉选框查看单个安全帽检测的结果。本功能的界面展示如下图所示:



(三)安全帽视频识别效果展示

       很多时候我们需要识别一段视频,这里设计了视频选择功能。点击视频按钮可选择待检测的视频,系统会自动解析视频逐帧识别安全帽佩戴情况,并将结果记录在右下角表格中,效果如下图所示:



(四)摄像头检测效果展示

       在真实场景中,我们往往利用设备摄像头获取实时画面,同时需要对画面中是否佩戴安全帽进行识别,因此本文考虑到此项功能。如下图所示,点击摄像头按钮后系统进入准备状态,系统显示实时画面并开始检测画面中的安全帽,识别结果展示如下图:




2. 检测模型与训练


       管理人员可以直接了解工人是否正确、安全佩戴头盔的信息,及时采取措施,避免不必要的损失。本文的系统采用了基于YOLOV5的安全帽检测与识别的方法,头盔上的测试结果达到了95.2%,基于此的预警功能可以帮助减少工地事故的危害。本文借助YoloV5算法,实现安全帽检测识别,这里首先对实现原理进行介绍。

(一)原理简介

       前文已经介绍过YoloV5中的Backbone结构,Backbone可以被称作YoloV5的主干特征提取网络,根据它的结构以及之前Yolo主干的叫法,我一般叫它CSPDarknet,输入的图片首先会在CSPDarknet里面进行特征提取,提取到的特征可以被称作特征层,是输入图片的特征集合。在主干部分,我们获取了三个特征层进行下一步网络的构建,这三个特征层我称它为有效特征层。



       FPN可以被称作YoloV5的加强特征提取网络,在主干部分获得的三个有效特征层会在这一部分进行特征融合,特征融合的目的是结合不同尺度的特征信息。在FPN部分,已经获得的有效特征层被用于继续提取特征。在YoloV5里依然使用到了Panet的结构,我们不仅会对特征进行上采样实现特征融合,还会对特征再次进行下采样实现特征融合。



       Yolo Head是YOLOv5的分类器与回归器,通过CSPDarknet和FPN,我们已经可以获得三个加强过的有效特征层。每一个特征层都有宽、高和通道数,此时我们可以将特征图看作一个又一个特征点的集合,每一个特征点都有通道数个特征。Yolo Head实际上所做的工作就是对特征点进行判断,判断特征点是否有物体与其对应。与以前版本的Yolo一样,YoloV5所用的解耦头是一起的,也就是分类和回归在一个1X1卷积里实现。

python
# YOLOv5 neck and head
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, BottleneckCSP, [512, False]],  # 13
   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, BottleneckCSP, [256, False]],  # 17 (P3/8-small)
   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, BottleneckCSP, [512, False]],  # 20 (P4/16-medium)
   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, BottleneckCSP, [1024, False]],  # 23 (P5/32-large)
   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]


       利用以上网络进行训练,所有层中的权重均采用标准偏差为0.01,均值为0的高斯随机值初始化。训练时不使用预训练模型,不使用基准可用的图像和标签之外的任何数据,网络从头开始进行训练。训练的目标值用与真实类别相对应的稀疏二进制向量表示。


(二)安全帽数据集与训练过程

       这里我们使用的安全帽识别数据集,包含训练集910张图片,验证集304张图片,共计1214张图片。部分数据集图片及其标注信息如下图所示。



       每张图像均提供了图像类标记信息,图像中安全帽的bounding box,安全帽的关键part信息,以及安全帽的属性信息,数据集并解压后得到如下的图片。



       在python环境配置完成后,我们运行train.py进行训练。YOLOv5训练时主要包含三个方面的损失:矩形框损失(box_loss)、置信度损失(obj_loss)和分类损失(cls_loss),下图为博主训练安全帽识别的模型训练曲线图。



       我们通过设定不同的置信度的阈值,可以得到在模型在不同的阈值下所计算出的p值和r值,一般情况下,p值和r值是负相关的,绘制出来可以得到如下图所示的曲线,其中曲线的面积我们称AP,目标检测模型中每种目标可计算出一个AP值,对所有的AP值求平均则可以得到模型的mAP值。



       以PR-curve为例,可以看到我们的模型在验证集上的均值平均准确率为0.910。


3. 安全帽检测识别


       在训练完成后得到最佳模型,接下来我们将帧图像输入到这个网络进行预测,从而得到预测结果,预测方法(predict.py)部分的代码如下所示:

python
def predict(img):
    img = torch.from_numpy(img).to(device)
    img = img.half() if half else img.float()
    img /= 255.0
    if img.ndimension() == 3:
        img = img.unsqueeze(0)
    t1 = time_synchronized()
    pred = model(img, augment=False)[0]
    pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes,
                               agnostic=opt.agnostic_nms)
    t2 = time_synchronized()
    InferNms = round((t2 - t1), 2)
    return pred, InferNms


       得到预测结果我们便可以将帧图像中的安全帽框出,然后在图片上用opencv绘图操作,输出安全帽的类别及安全帽的预测分数。以下是读取一个安全帽图片并进行检测的脚本,首先将图片数据进行预处理后送predict进行检测,然后计算标记框的位置并在图中标注出来。

python
if __name__ == '__main__':
    # video_path = 0
    video_path = "UI_rec/test_/test.mp4"
    # 初始化视频流
    vs = cv2.VideoCapture(video_path)
    (W, H) = (None, None)
    frameIndex = 0  # 视频帧数
    try:
        prop = cv2.CAP_PROP_FRAME_COUNT
        total = int(vs.get(prop))
        # print("[INFO] 视频总帧数:{}".format(total))
    # 若读取失败,报错退出
    except:
        print("[INFO] could not determine # of frames in video")
        print("[INFO] no approx. completion time can be provided")
        total = -1
    fourcc = cv2.VideoWriter_fourcc(*'XVID')
    ret, frame = vs.read()
    vw = frame.shape[1]
    vh = frame.shape[0]
    print("[INFO] 视频尺寸:{} * {}".format(vw, vh))
    output_video = cv2.VideoWriter("./results.avi", fourcc, 20.0, (vw, vh))  # 处理后的视频对象
    # 遍历视频帧进行检测
    while True:
        # 从视频文件中逐帧读取画面
        (grabbed, image) = vs.read()
        # 若grabbed为空,表示视频到达最后一帧,退出
        if not grabbed:
            print("[INFO] 运行结束...")
            output_video.release()
            vs.release()
            exit()
        # 获取画面长宽
        if W is None or H is None:
            (H, W) = image.shape[:2]
        image = cv2.resize(image, (850, 500))
        img0 = image.copy()
        img = letterbox(img0, new_shape=imgsz)[0]
        img = np.stack(img, 0)
        img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
        img = np.ascontiguousarray(img)
        pred, useTime = predict(img)
        det = pred[0]
        p, s, im0 = None, '', img0
        if det is not None and len(det):  # 如果有检测信息则进入
            det[:, :4] = scale_coords(img.shape[1:], det[:, :4], im0.shape).round()  # 把图像缩放至im0的尺寸
            number_i = 0  # 类别预编号
            detInfo = []
            for *xyxy, conf, cls in reversed(det):  # 遍历检测信息
                c1, c2 = (int(xyxy[0]), int(xyxy[1])), (int(xyxy[2]), int(xyxy[3]))
                # 将检测信息添加到字典中
                detInfo.append([names[int(cls)], [c1[0], c1[1], c2[0], c2[1]], '%.2f' % conf])
                number_i += 1  # 编号数+1
                label = '%s %.2f' % (names[int(cls)], conf)
                # 画出检测到的目标物
                plot_one_box(image, xyxy, label=label, color=colors[int(cls)])
        # 实时显示检测画面
        cv2.imshow('Stream', image)
        image = cv2.resize(image, (vw, vh))
        output_video.write(image)  # 保存标记后的视频
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
        # print("FPS:{}".format(int(0.6/(end-start))))
        frameIndex += 1


       执行得到的结果如下图所示,图中安全帽的种类和置信度值都标注出来了,预测速度较快。基于此模型我们可以将其设计成一个带有界面的系统,在界面上选择图片、视频或摄像头然后调用模型进行检测。



       博主对整个系统进行了详细测试,最终开发出一版流畅得到清新界面,就是博文演示部分的展示,完整的UI界面、测试图片视频、代码文件,以及Python离线依赖包(方便安装运行,也可自行配置环境),均已打包上传,感兴趣的朋友可以通过下载链接获取。


相关文章
|
24天前
|
机器学习/深度学习 监控 TensorFlow
使用Python实现深度学习模型:智能农业病虫害检测与防治
使用Python实现深度学习模型:智能农业病虫害检测与防治
180 65
|
7天前
|
机器学习/深度学习 并行计算 PyTorch
图像检测【YOLOv5】——深度学习
Anaconda的安装配置:(Anaconda是一个开源的Python发行版本,包括Conda、Python以及很多安装好的工具包,比如:numpy,pandas等,其中conda是一个开源包和环境管理器,可以用于在同一个电脑上安装不同版本的软件包,并且可以在不同环境之间切换,是深度学习的必备平台。) 一.Anaconda安装配置. 1.首先进入官网:https://repo.anaconda.com,选择View All Installers. 2.打开看到的界面是Anaconda的所以安装包版本,Anaconda3就代表是Python3版本,后面跟的是发行日期,我选择了最近的2022
42 28
|
5天前
|
机器学习/深度学习 计算机视觉
深度学习之农作物病害检测
基于深度学习的农作物病害检测利用卷积神经网络(CNN)、生成对抗网络(GAN)、Transformer等深度学习技术,自动识别和分类农作物的病害,帮助农业工作者提高作物管理效率、减少损失。
24 3
|
11天前
|
机器学习/深度学习 传感器 监控
红外小目标检测:基于深度学习
本文介绍了红外小目标检测技术的优势、基本原理及常用方法,包括背景抑制、滤波、模型和深度学习等,并探讨了多传感器融合的应用。通过一个基于深度学习的实战案例,展示了从数据准备到模型训练的全过程。最后,文章展望了该技术在军事、安防、交通等领域的广泛应用及未来发展趋势。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
【深度学习】深度学习的概述及应用,附带代码示例
深度学习(Deep Learning,简称DL)是机器学习领域中的一个重要分支,其目标是通过模拟人脑神经网络的工作机制,构建多层次的抽象特征表示,使机器能够自动从原始数据中提取关键信息,从而实现高精度的任务执行。深度学习通过多层神经网络结构及其训练方式,实现了从低级像素级别到高级概念级别的递进式知识层次。 深度学习的主要组件包括输入层、隐藏层和输出层。隐藏层的数量和层数决定了模型的复杂度和表达能力。在训练过程中,权重更新和梯度下降法是关键步骤,目的是最小化损失函数,提高预测精度。深度学习主要基于反向传播算法(BP Algorithm)来优化模型参数,通过正向传播、损失计算、反向传播和梯度下降等
71 8
|
1月前
|
机器学习/深度学习 监控 算法
基于深度学习网络的人员行为视频检测系统matlab仿真,带GUI界面
本仿真展示了基于GoogLeNet的人员行为检测系统在Matlab 2022a上的实现效果,无水印。GoogLeNet采用创新的Inception模块,高效地提取视频中人员行为特征并进行分类。核心程序循环读取视频帧,每十帧执行一次分类,最终输出最频繁的行为类别如“乐队”、“乒乓球”等。此技术适用于智能监控等多个领域。
54 4
|
1月前
|
机器学习/深度学习 语音技术
深度学习之音频伪造检测
基于深度学习的音频伪造检测是一个旨在利用深度学习技术识别和检测伪造音频内容的研究领域。
43 0
|
4天前
|
数据采集 机器学习/深度学习 人工智能
Python编程入门:从零基础到实战应用
【9月更文挑战第15天】本文将引导读者从零开始学习Python编程,通过简单易懂的语言和实例,帮助初学者掌握Python的基本语法和常用库,最终实现一个简单的实战项目。文章结构清晰,分为基础知识、进阶技巧和实战应用三个部分,逐步深入,让读者在学习过程中不断积累经验,提高编程能力。
|
5天前
|
机器学习/深度学习 数据采集 人工智能
探索Python的奥秘:从基础到进阶的编程之旅
在这篇文章中,我们将深入探讨Python编程的基础知识和进阶技巧。通过清晰的解释和实用的示例,无论您是编程新手还是有经验的开发者,都能从中获得有价值的见解。我们将覆盖从变量、数据类型到类和对象的各个方面,助您在编程世界里游刃有余。
23 10
|
1天前
|
人工智能 数据挖掘 开发者
Python编程入门:从基础到实战
【9月更文挑战第18天】本文将带你走进Python的世界,从最基本的语法开始,逐步深入到实际的项目应用。无论你是编程新手,还是有一定基础的开发者,都能在这篇文章中找到你需要的内容。我们将通过详细的代码示例和清晰的解释,让你轻松掌握Python编程。
15 5