血细胞智能检测与计数软件(Python+YOLOv5深度学习模型+清新界面版)

本文涉及的产品
模型训练 PAI-DLC,5000CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,5000CU*H 3个月
简介: 血细胞智能检测与计数软件(Python+YOLOv5深度学习模型+清新界面版)

前言


       目标检测主要通过人工智能技术识别并定位图像中的物体,在实际生活中应用领域广泛:数字摄像机智能火灾监控、医学影像肿瘤检测、数码相机人脸自动定位等等多个领域。传统目标检测算法因无法利用图像的深层特征而易受到物体遮挡、光照变化等因素的干扰,导致漏检与误检。深度学习的出现可以很好地解决这一问题。深度学习算法可以从样本中学习,通过对特征的加工组合,进而提取图像的更深层特征。本文在深度学习理论的支持下研究目标检测在血液细胞中的应用。。

       医疗图像的获取以及标注需要耗费巨大的人力成本,而训练数据不足会导致模型出现过拟合的现象,尤其是血液细胞中各类细胞的识别。并且血液细胞图像本身存在着对比度低和各类细胞数量、外形差异较大的特点,这些都影响着血液细胞检测的精度。本文在对深度学习目标检测算法研究的基础上,对血液细胞中的各类细胞识别,并使用算法得到较高的血液细胞的检测精度。

       本系统采用登录注册进行用户管理,对于图片、视频和摄像头捕获的实时画面,可检测医疗图像,系统支持结果记录、展示和保存,每次检测的结果记录在表格中。对此这里给出博主设计的界面,同款的简约风,功能也可以满足图片、视频和摄像头的识别检测,希望大家可以喜欢,初始界面如下图:



       检测类别时的界面截图(点击图片可放大)如下图,可识别画面中存在的多个类别,也可开启摄像头或视频检测:



        详细的功能演示效果参见博主的B站视频或下一节的动图演示,觉得不错的朋友敬请点赞、关注加收藏!系统UI界面的设计工作量较大,界面美化更需仔细雕琢,大家有任何建议或意见和可在下方评论交流。


1. 效果演示


       软件好不好用,颜值很重要,首先我们还是通过动图看一下识别的效果,系统主要实现的功能是对图片、视频和摄像头画面中的血细胞进行识别,识别的结果可视化显示在界面和图像中,另外提供多个目标的显示选择功能,演示效果如下。

(一)系统介绍

       血细胞智能检测与计数软件主要用于显微镜下的血细胞检测与计数,基于深度学习技术识别图像中常见的4种血细胞,包括血小板、红细胞、白细胞、镰状细胞等,输出细胞的标记框坐标和类别,以辅助自动化细胞统计和医学研究;软件提供登录注册功能,可进行用户管理;软件能够有效识别电子显微镜采集的细胞图片、视频等文件形式,检测各种细胞形态,并记录识别结果在界面表格中方便查看;可开启摄像头实时监测和统计当前视野范围各种类型细胞数目,支持结果记录、展示和保存。

(二)技术特点

        (1)YoloV5目标检测算法检测血细胞,模型支持更换;

        (2)摄像头实时检测血细胞,展示、记录和保存结果;

        (3)检测图片、视频等图像中的血细胞个体;

        (4)支持用户登录、注册,检测结果可视化功能;

(三)用户注册登录界面

       这里设计了一个登录界面,可以注册账号和密码,然后进行登录。界面还是参考了当前流行的UI设计,左侧是一个动图,右侧输入账号、密码、验证码等等。



(四)选择图片识别

       系统允许选择图片文件进行识别,点击图片选择按钮图标选择图片后,显示所有识别的结果,可通过下拉选框查看单个结果,以便具体判断某一特定目标。本功能的界面展示如下图所示:



(五)视频识别效果展示

       很多时候我们需要识别一段视频中的血细胞,这里设计了视频选择功能。点击视频按钮可选择待检测的视频,系统会自动解析视频逐帧识别多个血细胞,并将血细胞的分类和计数结果记录在右下角表格中,效果如下图所示:



(六)摄像头检测效果展示

       在真实场景中,我们往往利用摄像头获取实时画面,同时需要对血细胞进行识别,因此本文考虑到此项功能。如下图所示,点击摄像头按钮后系统进入准备状态,系统显示实时画面并开始检测画面中的血细胞,识别结果展示如下图:




2. 血细胞数据集和模型训练


(一)数据集制作

       本文实验的血细胞数据集包含训练集2853张图片,验证集219张图片,测试集81张图片,共计3153张图片,选取部分数据部分样本数据集如图所示。



       每张图像均提供了图像类标记信息,图像中细胞的bounding box,目标的属性信息,数据集并解压后得到如下的图片



        船舰数据集的类别信息如下,包含血小板、红细胞、白细胞、镰状细胞等类别

python
Chinese_name = {'Platelets': "血小板", 'RBC': "红细胞", 'WBC': "白细胞", 'sickle cell': "镰状细胞"}


        原数据格式是xml文件对目标细胞注释,现在需要将这种注释转换为yolov5所需的格式。即每个图像对应一个txt文件,文件中存储该图像中全部细胞的类别和坐标,一行存储一个细胞的信息,如下图



        在本项目的同级目录下创建数据集存储路径,路径内创建训练集,测试集路径和配置文件dataset.yaml



        images内存储图像数据,labels存储标注数据,文件名称对应相同,设置数据集配置文件如下

python
train: ./Haemocytes/images/train
val: ./Haemocytes/images/valid
test: ./Haemocytes/images/test
nc: 4
names: ['Platelets', 'RBC', 'WBC', 'sickle cell']


        (1)train 指定训练集图像路径

        (2)val 指定验证集图像路径

        (3)nc 指定目标类别数量 这里为血小板,红细胞,白细胞共3种

        (4)目标对应类别名称

        接下来需要配置项目路径内的train.py的相关参数,指定预训练的模型权重和模型结构文件和数据集配置文件,训练的轮数,batch_size的大小和输入图像的分辨率。

python
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', type=str, default='yolov5s.pt', help='initial weights path')
    parser.add_argument('--cfg', type=str, default='models/yolov5s.yaml', help='model.yaml path')
    parser.add_argument('--data', type=str, default='dataset.yaml', help='data.yaml path')
    parser.add_argument('--hyp', type=str, default='data/hyp.scratch.yaml', help='hyperparameters path')
    parser.add_argument('--epochs', type=int, default=300)
    parser.add_argument('--batch-size', type=int, default=1, help='total batch size for all GPUs')
    parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')


       在我们的训练过程中,mAP50作为一种常用的目标检测评估指标很快达到了较高水平,而mAP50:95也在训练的过程中不断提升,说明我们模型从训练-验证的角度表现良好。读入一个测试文件夹进行预测,通过训练得到的选取验证集上效果最好的权重best.pt进行实验,得到PR曲线如下图所示。



       在深度学习中,我们通常通过损失函数下降的曲线来观察模型训练的情况。而YOLOv5训练时主要包含三个方面的损失:矩形框损失(box_loss)、置信度损失(obj_loss)和分类损失(cls_loss),在训练结束后,我们也可以在logs目录下找到生成对若干训练过程统计图。下图为博主训练血细胞识别的模型训练曲线图。



       以PR-curve为例,可以看到我们的模型在验证集上的均值平均准确率为0.794。


3. 血细胞检测识别


       运行testVideo得到预测结果,我们便可以将帧图像中的血细胞框出,然后在图片上用opencv绘图操作,输出血细胞的类别及血细胞的预测分数。以下是读取血细胞视频并进行检测的脚本,首先将图片数据进行预处理后送predict进行检测,然后计算标记框的位置并在图中标注出来。

python
while True:
        # 从视频文件中逐帧读取画面
        (grabbed, image) = vs.read()
        # 若grabbed为空,表示视频到达最后一帧,退出
        if not grabbed:
            print("[INFO] 运行结束...")
            output_video.release()
            vs.release()
            exit()
        # 获取画面长宽
        if W is None or H is None:
            (H, W) = image.shape[:2]
        image = cv2.resize(image, (850, 500))
        img0 = image.copy()
        img = letterbox(img0, new_shape=imgsz)[0]
        img = np.stack(img, 0)
        img = img[:, :, ::-1].transpose(2, 0, 1)  # BGR to RGB, to 3x416x416
        img = np.ascontiguousarray(img)
        pred, useTime = predict(img)
        det = pred[0]
        p, s, im0 = None, '', img0
        if det is not None and len(det):  # 如果有检测信息则进入
            det[:, :4] = scale_coords(img.shape[1:], det[:, :4], im0.shape).round()  # 把图像缩放至im0的尺寸
            number_i = 0  # 类别预编号
            detInfo = []
            for *xyxy, conf, cls in reversed(det):  # 遍历检测信息
                c1, c2 = (int(xyxy[0]), int(xyxy[1])), (int(xyxy[2]), int(xyxy[3]))
                # 将检测信息添加到字典中
                detInfo.append([names[int(cls)], [c1[0], c1[1], c2[0], c2[1]], '%.2f' % conf])
                number_i += 1  # 编号数+1
                label = '%s %.2f' % (names[int(cls)], conf)
                # 画出检测到的目标物
                plot_one_box(image, xyxy, label=label, color=colors[int(cls)])
        # 实时显示检测画面
        cv2.imshow('Stream', image)
        image = cv2.resize(image, (vw, vh))
        output_video.write(image)  # 保存标记后的视频
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break
        # print("FPS:{}".format(int(0.6/(end-start))))
        frameIndex += 1


       执行得到的结果如下图所示,图中血细胞的种类和置信度值都标注出来了,预测速度较快。基于此模型我们可以将其设计成一个带有界面的系统,在界面上选择图片、视频或摄像头然后调用模型进行检测。



       博主对整个系统进行了详细测试,最终开发出一版流畅得到清新界面,就是博文演示部分的展示,完整的UI界面、测试图片视频、代码文件,以及Python离线依赖包(方便安装运行,也可自行配置环境),均已打包上传,感兴趣的朋友可以通过下载链接获取。


相关文章
|
8天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现深度学习模型:智能心理健康评估
使用Python实现深度学习模型:智能心理健康评估
30 2
使用Python实现深度学习模型:智能心理健康评估
|
8天前
|
机器学习/深度学习 人工智能 TensorFlow
神经网络深度剖析:Python带你潜入AI大脑,揭秘智能背后的秘密神经元
【9月更文挑战第12天】在当今科技飞速发展的时代,人工智能(AI)已深入我们的生活,从智能助手到自动驾驶,从医疗诊断到金融分析,其力量无处不在。这一切的核心是神经网络。本文将带领您搭乘Python的航船,深入AI的大脑,揭秘智能背后的秘密神经元。通过构建神经网络模型,我们可以模拟并学习复杂的数据模式。以下是一个使用Python和TensorFlow搭建的基本神经网络示例,用于解决简单的分类问题。
31 10
|
4天前
|
机器学习/深度学习 数据可视化 算法框架/工具
使用Python实现深度学习模型:智能家庭安防系统
使用Python实现深度学习模型:智能家庭安防系统
17 1
|
5天前
|
机器学习/深度学习 数据可视化 搜索推荐
使用Python实现深度学习模型:智能睡眠监测与分析
使用Python实现深度学习模型:智能睡眠监测与分析
26 2
|
6天前
|
机器学习/深度学习 搜索推荐 TensorFlow
使用Python实现深度学习模型:智能饮食建议与营养分析
使用Python实现深度学习模型:智能饮食建议与营养分析
30 3
|
7天前
|
机器学习/深度学习 搜索推荐 算法框架/工具
使用Python实现深度学习模型:智能运动表现分析
使用Python实现深度学习模型:智能运动表现分析
30 1
|
1天前
|
机器学习/深度学习 监控 TensorFlow
使用Python实现深度学习模型:智能宠物监控与管理
使用Python实现深度学习模型:智能宠物监控与管理
12 0
|
5天前
|
Python
Python编程中的异常处理:理解与实践
【9月更文挑战第14天】在编码的世界里,错误是不可避免的。它们就像路上的绊脚石,让我们的程序跌跌撞撞。但是,如果我们能够预见并优雅地处理这些错误,我们的程序就能像芭蕾舞者一样,即使在跌倒的边缘,也能轻盈地起舞。本文将带你深入了解Python中的异常处理机制,让你的代码在面对意外时,依然能保持优雅和从容。
140 73
|
5天前
|
人工智能 数据挖掘 数据处理
揭秘Python编程之美:从基础到进阶的代码实践之旅
【9月更文挑战第14天】本文将带领读者深入探索Python编程语言的魅力所在。通过简明扼要的示例,我们将揭示Python如何简化复杂问题,提升编程效率。无论你是初学者还是有一定经验的开发者,这篇文章都将为你打开一扇通往高效编码世界的大门。让我们开始这段充满智慧和乐趣的Python编程之旅吧!
|
4天前
|
数据采集 机器学习/深度学习 人工智能
Python编程入门:从零基础到实战应用
【9月更文挑战第15天】本文将引导读者从零开始学习Python编程,通过简单易懂的语言和实例,帮助初学者掌握Python的基本语法和常用库,最终实现一个简单的实战项目。文章结构清晰,分为基础知识、进阶技巧和实战应用三个部分,逐步深入,让读者在学习过程中不断积累经验,提高编程能力。