【OpenVI—论文解读系列】榜首模型人脸检测MogFace CVPR论文深入解读

简介: 人脸检测算法是在一幅图片或者视频序列中检测出来人脸的位置,给出人脸的具体坐标,一般是矩形坐标。

一、背景

 人脸检测算法是人脸关键点、属性、编辑、风格化、识别等模块的基础。本文通过实验观察发现,对应设计出如下三个模块构建出一个高性能的人脸检测器MogFace:1.)动态标签分配策略(dynamic label assignment),2.)误检上下文相关性分析(FP context analysis),3.)金字塔层级监督信号分配(pyramid layer level GT assignment)。该方法的模型在WIDER FACE榜单上取得了截止目前将近两年的六项第一。立即体验:

https://vision.aliyun.com/experience/detail?Name=facebody&children=DetectFace


二、观察

1.1 动态标签分配策略(dynamic label assignment)

 为每个anchor点定义cls和reg目标是训练检测器的必要过程,在人脸检测中这个过程称之为标签分配(Label Assignment)。最近,标签分配吸引了诸多研究人员的注意,在人脸检测及通用物体检测领域提出了一系列方法,例如:OTA、PAA,ATSS以及HAMBox。 如示例图(a),标签分配过程依赖4个元素。分别是:1.)offline information: a.)IoU (anchor与ground-truth框的IoU) , b.)CPD (anchor与ground-truth中心点的距离) ,2.)online information: a.)PCS (cls分支对anchor的前景分类概率值) ,b.)PLC (reg分支对anchor的预测坐标值)。

1.png  但是,目前的标签分配方法存在三个问题。1.)若只用offline information做静态标签分配,那么会有很多具备更强回归能力的negative anchor无法被有效利用起来,会导致标签分配策略欠饱和。2.)若过度信任online information动态调整正负anchor时(如OTA和Hambox),由于online information属于预测信息可信度不高,会导致标签分配策略错误多, 极端情况下会陷入trivial 的分配结果。 3.) 若引入大量超参 (K in ATSS, alpha in OTA)做标签分配,则当数据集分布发生变化时,需要大量的调参时间。


1.2 误检上下文相关性分析(FP context analysis)

 在实际应用中,人脸检测器并不会十分care AP的指标,而对误检(false positive [FP])的数量十分敏感。针对这个问题,目前的做法是收集大量带有FP的图片去fine-tune或者from scratch训练检测器,来帮助检测器了解更多范式的FP,但是我们发现有些频繁出现在训练集中的的FP在这种策略下无法有效解决。这篇文章,我们发现了一个有趣的现象:对于同一个FP,当它的context发生变化时,对于同一个检测器来说它可能就不是FP了。如下图(c),最左面的图片里日历是FP,剩余两张日历都不是FP。

2.png

1.3 金字塔层级监督信号分配(pyramid layer level GT assignment)

 scale-level 数据增强策略常常作通用物体检测以及人脸检测中解决scale variance主要手段。如图(b)所示,相对于COCO,人脸检测数据集Wider Face 中人脸的尺度分布更为严峻。为此,我们分提出了一个新的问题,如何合理的分配ground-truth 在不同pyramidlayer上的分布?即检测器的性能与每个pyramidlayer匹配ground-truth的个数之间的关系是什么?是否越多越好?通过严格的对比实验我们发现:“对于所有的pyramid layer来说,并不是这个pyramid layer匹配到越多的ground-truth就越好”。这说明要挖掘每一个pyramidlayer的最好性能,需要控制在这个pyramidlayer上的ground-truth分配的比例。

3.png


三、方法

2.1 Adaptive Online Incremental Anchor Mining Strategy (Ali-AMS)

 针对上述“动态标签分配策略(dynamic label assignment)”观察分析,本文提出了在里面一种自适应的在线增量锚挖掘策略(Ali-AMS),它基于standard anchor matching 策略,并进一步adaptive 帮助outlier face匹配anchor。如下:

4.png


2.2 Hierachical Context-Aware Module (HCAM)

 基于上述“误检上下文相关性分析(FP context analysis)”观察分析,发现“对于同一个FP,当它的context发生变化时,对于同一个检测器来说他可能就不是FP了”,我们进一步提出了一个two-step的模块来显示的encode context 信息来帮助区分FP和TP,显著减少了FP的数量。

5.png


2.3 Selective Scale Enhancement Strategy (SSE)

 基于上述的“金字塔层级监督信号分配(pyramid layer level GT assignment)”观察分析,发现“对于所有的pyramid layer来说,并不是这个pyramid layer匹配到越多的ground-truth就越好”,我们提出通过控制pyramid layer 匹配的ground-truth的数量来最大化pyramid layer 的性能。

6.png


四、实验

3.1 Ablation Study

7.png

3.2 Comparison with sota

8.png


五、更多体验

大家如果想要稳定调用及效果更好的API,详见视觉开放智能平台https://vision.aliyun.com/



相关文章
|
8月前
|
机器学习/深度学习 人工智能 算法
【计算机视觉 | 目标检测】arxiv 计算机视觉关于目标检测的学术速递(8 月 10 日论文合集)(下)
【计算机视觉 | 目标检测】arxiv 计算机视觉关于目标检测的学术速递(8 月 10 日论文合集)(下)
|
8月前
|
机器学习/深度学习 传感器 人工智能
【计算机视觉 | 图像分类】arxiv 计算机视觉关于图像分类的学术速递(8 月 10 日论文合集)(下)
【计算机视觉 | 图像分类】arxiv 计算机视觉关于图像分类的学术速递(8 月 10 日论文合集)(下)
|
8月前
|
机器学习/深度学习 编解码 算法
【计算机视觉 | 目标检测】arxiv 计算机视觉关于目标检测的学术速递(8 月 9 日论文合集)
【计算机视觉 | 目标检测】arxiv 计算机视觉关于目标检测的学术速递(8 月 9 日论文合集)
|
8月前
|
机器学习/深度学习 自动驾驶 数据可视化
【计算机视觉 | 目标检测】arxiv 计算机视觉关于目标检测的学术速递(8 月 11 日论文合集)
【计算机视觉 | 目标检测】arxiv 计算机视觉关于目标检测的学术速递(8 月 11 日论文合集)
|
8月前
|
机器学习/深度学习 编解码 算法
【计算机视觉 | Transformer】arxiv 计算机视觉关于Transformer的学术速递(8 月 10 日论文合集)
【计算机视觉 | Transformer】arxiv 计算机视觉关于Transformer的学术速递(8 月 10 日论文合集)
|
8月前
|
机器学习/深度学习 编解码 自然语言处理
【计算机视觉 | Transformer】arxiv 计算机视觉关于Transformer的学术速递(8 月 11 日论文合集)
【计算机视觉 | Transformer】arxiv 计算机视觉关于Transformer的学术速递(8 月 11 日论文合集)
|
8月前
|
机器学习/深度学习 运维 自动驾驶
【计算机视觉 | 目标检测】arxiv 计算机视觉关于目标检测的学术速递(8 月 10 日论文合集)(上)
【计算机视觉 | 目标检测】arxiv 计算机视觉关于目标检测的学术速递(8 月 10 日论文合集)(上)
|
8月前
|
机器学习/深度学习 编解码 测试技术
【计算机视觉 | 图像分类】arxiv 计算机视觉关于图像分类的学术速递(8 月 10 日论文合集)(上)
【计算机视觉 | 图像分类】arxiv 计算机视觉关于图像分类的学术速递(8 月 10 日论文合集)(上)
|
8月前
|
机器学习/深度学习 存储 运维
【计算机视觉 | 目标检测】arxiv 计算机视觉关于目标检测的学术速递(8 月 14 日论文合集)
【计算机视觉 | 目标检测】arxiv 计算机视觉关于目标检测的学术速递(8 月 14 日论文合集)
|
8月前
|
机器学习/深度学习 图形学 计算机视觉
【计算机视觉 | Transformer】arxiv 计算机视觉关于Transformer的学术速递(8 月 14 日论文合集)
【计算机视觉 | Transformer】arxiv 计算机视觉关于Transformer的学术速递(8 月 14 日论文合集)

热门文章

最新文章