【数据结构】一文带你领略二叉树的奥秘

简介: 比如下面这幅图,A节点就是B节点的 父节点,B节点是A节点的 子节点。B、C、D这三个节点的父节点是同一个节点,所以它们之间互称为 兄弟节点。我们把没有父节点的节点叫做 根节点,也就是图中的节点E。我们把没有子节点的节点叫做 叶子节点 或者 叶节点,比如图中的G、H、I、J、K、L都是叶子节点。

@[toc]
在这里插入图片描述

🐱‍🐉作者简介:大家好,我是黑洞晓威,一名大二学生,希望和大家一起进步。
👿本文收录于 算法,本专栏是针对大学生、初学算法的人准备,解析常见的数据结构与算法,同时备战蓝桥杯。

树(Tree)

我们首先来看,什么是“树”?再完备的定义,都没有图直观。所以我在图中画了几棵“树”。你来看看,这些“树”都有什么特征?

在这里插入图片描述

你有没有发现,“树”这种数据结构真的很像我们现实生活中的“树”,这里面每个元素我们叫做“节点”;用来连接相邻节点之间的关系,我们叫做“父子关系”。

比如下面这幅图,A节点就是B节点的 父节点,B节点是A节点的 子节点。B、C、D这三个节点的父节点是同一个节点,所以它们之间互称为 兄弟节点。我们把没有父节点的节点叫做 根节点,也就是图中的节点E。我们把没有子节点的节点叫做 叶子节点 或者 叶节点,比如图中的G、H、I、J、K、L都是叶子节点。

在这里插入图片描述

高度、深度、层

除此之外,关于“树”,还有三个比较相似的概念: 高度(Height)、 深度(Depth)、 (Level)。它们的定义是这样的:

在这里插入图片描述

这三个概念的定义比较容易混淆,描述起来也比较空洞。我举个例子说明一下,你一看应该就能明白。

在这里插入图片描述

二叉树(Binary Tree)

树结构多种多样,不过我们最常用还是二叉树。

二叉树,顾名思义,每个节点最多有两个“叉”,也就是两个子节点,分别是 左子节点右子节点。不过,二叉树并不要求每个节点都有两个子节点,有的节点只有左子节点,有的节点只有右子节点。我画的这几个都是二叉树。以此类推,你可以想象一下四叉树、八叉树长什么样子。

在这里插入图片描述

满二叉树与完全二叉树

这个图里面,有两个比较特殊的二叉树,分别是编号2和编号3这两个。

其中,编号2的二叉树中,叶子节点全都在最底层,除了叶子节点之外,每个节点都有左右两个子节点,这种二叉树就叫做 满二叉树

编号3的二叉树中,叶子节点都在最底下两层,最后一层的叶子节点都靠左排列,并且除了最后一层,其他层的节点个数都要达到最大,这种二叉树叫做 完全二叉树

满二叉树很好理解,也很好识别,但是完全二叉树,有的人可能就分不清了。我画了几个完全二叉树和非完全二叉树的例子,你可以对比着看看。

在这里插入图片描述

链式存储与顺序存储

要理解完全二叉树定义的由来,我们需要先了解, 如何表示(或者存储)一棵二叉树?

想要存储一棵二叉树,我们有两种方法,一种是基于指针或者引用的二叉链式存储法,一种是基于数组的顺序存储法。

我们先来看比较简单、直观的 链式存储法。从图中你应该可以很清楚地看到,每个节点有三个字段,其中一个存储数据,另外两个是指向左右子节点的指针。我们只要拎住根节点,就可以通过左右子节点的指针,把整棵树都串起来。这种存储方式我们比较常用。大部分二叉树代码都是通过这种结构来实现的。

在这里插入图片描述

我们再来看,基于数组的 顺序存储法。我们把根节点存储在下标i = 1的位置,那左子节点存储在下标2 * i = 2的位置,右子节点存储在2 * i + 1 = 3的位置。以此类推,B节点的左子节点存储在2 * i = 2 * 2 = 4的位置,右子节点存储在2 * i + 1 = 2 * 2 + 1 = 5的位置。

在这里插入图片描述

我来总结一下,如果节点X存储在数组中下标为i的位置,下标为2 * i 的位置存储的就是左子节点,下标为2 * i + 1的位置存储的就是右子节点。反过来,下标为i/2的位置存储就是它的父节点。通过这种方式,我们只要知道根节点存储的位置(一般情况下,为了方便计算子节点,根节点会存储在下标为1的位置),这样就可以通过下标计算,把整棵树都串起来。

不过,我刚刚举的例子是一棵完全二叉树,所以仅仅“浪费”了一个下标为0的存储位置。如果是非完全二叉树,其实会浪费比较多的数组存储空间。你可以看我举的下面这个例子。

在这里插入图片描述

所以,如果某棵二叉树是一棵完全二叉树,那用数组存储无疑是最节省内存的一种方式。因为数组的存储方式并不需要像链式存储法那样,要存储额外的左右子节点的指针。这也是为什么完全二叉树会单独拎出来的原因,也是为什么完全二叉树要求最后一层的子节点都靠左的原因。

当我们讲到堆和堆排序的时候,你会发现,堆其实就是一种完全二叉树,最常用的存储方式就是数组。

二叉树的遍历

前面我讲了二叉树的基本定义和存储方法,现在我们来看二叉树中非常重要的操作,二叉树的遍历。这也是非常常见的面试题。

如何将所有节点都遍历打印出来呢?经典的方法有三种, 前序遍历中序遍历后序遍历。其中,前、中、后序,表示的是节点与它的左右子树节点遍历打印的先后顺序。

  • 前序遍历是指,对于树中的任意节点来说,先打印这个节点,然后再打印它的左子树,最后打印它的右子树。
  • 中序遍历是指,对于树中的任意节点来说,先打印它的左子树,然后再打印它本身,最后打印它的右子树。
  • 后序遍历是指,对于树中的任意节点来说,先打印它的左子树,然后再打印它的右子树,最后打印这个节点本身。

在这里插入图片描述

实际上,二叉树的前、中、后序遍历就是一个递归的过程。比如,前序遍历,其实就是先打印根节点,然后再递归地打印左子树,最后递归地打印右子树。

写递归代码的关键,就是看能不能写出递推公式,而写递推公式的关键就是,如果要解决问题A,就假设子问题B、C已经解决,然后再来看如何利用B、C来解决A。所以,我们可以把前、中、后序遍历的递推公式都写出来。

前序遍历的递推公式:
preOrder(r) = print r->preOrder(r->left)->preOrder(r->right)

中序遍历的递推公式:
inOrder(r) = inOrder(r->left)->print r->inOrder(r->right)

后序遍历的递推公式:
postOrder(r) = postOrder(r->left)->postOrder(r->right)->print r

有了递推公式,代码写起来就简单多了。这三种遍历方式的代码,我都写出来了,你可以看看。

void preOrder(Node* root) {
  if (root == null) return;
  print root // 此处为伪代码,表示打印root节点
  preOrder(root->left);
  preOrder(root->right);
}

void inOrder(Node* root) {
  if (root == null) return;
  inOrder(root->left);
  print root // 此处为伪代码,表示打印root节点
  inOrder(root->right);
}

void postOrder(Node* root) {
  if (root == null) return;
  postOrder(root->left);
  postOrder(root->right);
  print root // 此处为伪代码,表示打印root节点
}

二叉树的前、中、后序遍历的递归实现是不是很简单?你知道 二叉树遍历的时间复杂度是多少 吗?我们一起来看看。

从我前面画的前、中、后序遍历的顺序图,可以看出来,每个节点最多会被访问两次,所以遍历操作的时间复杂度,跟节点的个数n成正比,也就是说二叉树遍历的时间复杂度是O(n)。

最后说一句

感谢大家的阅读,文章通过网络资源与自己的学习过程整理出来,希望能帮助到大家。

才疏学浅,难免会有纰漏,如果你发现了错误的地方,可以提出来,我会对其加以修改。

在这里插入图片描述

相关文章
|
7天前
|
数据库
数据结构中二叉树,哈希表,顺序表,链表的比较补充
二叉搜索树,哈希表,顺序表,链表的特点的比较
数据结构中二叉树,哈希表,顺序表,链表的比较补充
|
2月前
|
机器学习/深度学习 存储 算法
数据结构实验之二叉树实验基础
本实验旨在掌握二叉树的基本特性和遍历算法,包括先序、中序、后序的递归与非递归遍历方法。通过编程实践,加深对二叉树结构的理解,学习如何计算二叉树的深度、叶子节点数等属性。实验内容涉及创建二叉树、实现各种遍历算法及求解特定节点数量。
90 4
|
2月前
|
C语言
【数据结构】二叉树(c语言)(附源码)
本文介绍了如何使用链式结构实现二叉树的基本功能,包括前序、中序、后序和层序遍历,统计节点个数和树的高度,查找节点,判断是否为完全二叉树,以及销毁二叉树。通过手动创建一棵二叉树,详细讲解了每个功能的实现方法和代码示例,帮助读者深入理解递归和数据结构的应用。
141 8
|
3月前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
32 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
|
3月前
|
存储 算法 搜索推荐
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
这篇文章主要介绍了顺序存储二叉树和线索化二叉树的概念、特点、实现方式以及应用场景。
39 0
数据结构与算法学习十七:顺序储存二叉树、线索化二叉树
|
3月前
|
Java
【用Java学习数据结构系列】震惊,二叉树原来是要这么学习的(二)
【用Java学习数据结构系列】震惊,二叉树原来是要这么学习的(二)
33 1
|
3月前
|
算法 Java C语言
【用Java学习数据结构系列】震惊,二叉树原来是要这么学习的(一)
【用Java学习数据结构系列】震惊,二叉树原来是要这么学习的(一)
30 1
|
3月前
|
存储
【数据结构】二叉树链式结构——感受递归的暴力美学
【数据结构】二叉树链式结构——感受递归的暴力美学
|
3月前
|
存储 编译器 C++
【初阶数据结构】掌握二叉树遍历技巧与信息求解:深入解析四种遍历方法及树的结构与统计分析
【初阶数据结构】掌握二叉树遍历技巧与信息求解:深入解析四种遍历方法及树的结构与统计分析
|
3月前
|
存储 算法 调度
数据结构--二叉树的顺序实现(堆实现)
数据结构--二叉树的顺序实现(堆实现)