基于人工鱼群优化的电网规划算法matlab仿真

简介: 基于人工鱼群优化的电网规划算法matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:

3d11d7914743cd3a6c33e02cfe0a71f0_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要

   人工鱼群算法(Artificial Fish Swarm Algorithm,简称AFSA)是受鱼群行为的启发,由国内李晓磊博士于2002年提出的一种基于动物行为的群体智能优化算法,是行为主义人工智能的一个典型应用,这种算法源于鱼群的觅食行为。

   在一片水域中,鱼往往能自行或尾随其它鱼,找到营养物质多的地方,因而鱼生存数目最多的地方一般就是本水域中营养物质最多的地方。人工鱼群算法根据这一特点,通过构造人工鱼来模仿鱼群的觅食、聚群、追尾及随机行为,从而实现寻优。

    人工鱼(AF)是真实鱼的仿制品,用于分析和问题解释(Neshat、Sepidnam、Sargolzaei和Toosi(2012))。鱼类大多生活在食物充足的地区,它们通过跟随其他鱼类或单独寻找食物,向食物较多的地区移动。鱼类数量最多的地区通常是食物最多的。每条人工鱼的下一步行为取决于它目前的状态以及局部的环境状态,AF通过自身行为以及同伴的行为来影响环境。

(1)觅食行为(Prey)

bc19885162ee783d1a9e41ed68e56612_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

(2)聚群行为(Swarm)

fa6008444b451a0b482db3ca3afec5d3_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

(3)追尾行为(Follow)

dd98ac67a1d69c99e6a7995114662053_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

(4)随机行为

1b89855117ba8e7f0d12a11dace26fe1_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

(5)行为选择

    这是鱼类的生存习惯,反映出了鱼类的自主行为。在人工鱼群算法中,觅食行为奠定了算法的收敛基础,聚群行为增强了算法收敛的稳定性,追尾行为增强了算法收敛的快速性与全局性,行为选择策略则是为算法收敛的速度与稳定性提供了保障。

3.MATLAB核心程序

yjzl=yjzl;
dxzl=dxzl;
Pi=Pi;
[N,row]=size(Pi);  %N为节点数
fish=40;    %控制参数:人工鱼的条数
visual=7;   %控制参数:视野
delta=0.35;  %控制参数:拥挤度
step=5;     %控制参数:人工鱼移动的步长
maxcalculation=100;    %收敛条件:最大迭代次数
objectvalue=zeros(1,fish);  %食物浓度矩阵(1×fish)
[NN,row]=size(dxzl);   %NN为待选线路的维数
status=rand(fish,NN);  %人工鱼位置状态矩阵status
for i=1:fish
    for j=1:NN
        if status(i,j)<=0.5
            status(i,j)=0;
        else
            status(i,j)=1;
        end
    end
end
minvalue=inf;
for fishnumber=1:fish
    x=status(fishnumber,:);
    [B1,B,BL,NEW,NL,L,nbl]=builtnet(x,dxzl,yjzl);
    [tong]=liantong(N,L,BL);
    if tong>1
        objectvalue(fishnumber)=inf;
    else
       [operate,overflowvalue]=dcflow(N,L,BL,Pi,nbl);
       construction=0;
       for i=1:NEW
           construction=construction+25*B1(i,6);    %计算建设费用每公里线路建设费用取25万元
       end
       objectvalue(fishnumber)=construction+operate+overflowvalue;
    end
   if objectvalue(fishnumber)<minvalue
      minvalue=objectvalue(fishnumber);     %minvalue记录最小的目标函数值
      minfish=status(fishnumber,:);         %minfish记录最小目标函数值所对应的人工鱼的位置
   end
end
%进行行为策略
............................................................................
             [status,objectvalue]=prey(status,fishnumber,objectvalue,visual,fish,NN,N,delta,step,dxzl,yjzl,Pi);
        end
    end
end
for fishnumber=1:fish
    if objectvalue(fishnumber)<minvalue
      minvalue=objectvalue(fishnumber);  
      minfish=status(fishnumber,:); 
    end
end
min2(calculation)=minvalue;
disp(calculation);
disp(minvalue);
%if minvalue<=5900
%    break    
%end
calculation=calculation+1;
end
toc
plot(min2,'-*');
相关文章
|
3天前
|
算法 Serverless
基于魏格纳函数和焦散线方法的自加速光束matlab模拟与仿真
本项目基于魏格纳函数和焦散线方法,使用MATLAB 2022A模拟自加速光束。通过魏格纳函数法生成多种自加速光束,并设计相应方法,展示仿真结果。核心程序包括相位和幅度的计算、光场分布及拟合分析,实现对光束传播特性的精确控制。应用领域涵盖光学成像、光操控和光束聚焦等。 关键步骤: 1. 利用魏格纳函数计算光场分布。 2. 模拟并展示自加速光束的相位和幅度图像。 3. 通过拟合分析,验证光束加速特性。 该算法原理基于魏格纳函数描述光场分布,结合数值模拟技术,实现对光束形状和传播特性的精确控制。通过调整光束相位分布,可改变其传播特性,如聚焦或加速。
|
2天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
1天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
3天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
16天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
151 80
|
4天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
4天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
10天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
12天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
9天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。