基于人工鱼群优化的电网规划算法matlab仿真

简介: 基于人工鱼群优化的电网规划算法matlab仿真

1.算法仿真效果
matlab2022a仿真结果如下:

3d11d7914743cd3a6c33e02cfe0a71f0_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要

   人工鱼群算法(Artificial Fish Swarm Algorithm,简称AFSA)是受鱼群行为的启发,由国内李晓磊博士于2002年提出的一种基于动物行为的群体智能优化算法,是行为主义人工智能的一个典型应用,这种算法源于鱼群的觅食行为。

   在一片水域中,鱼往往能自行或尾随其它鱼,找到营养物质多的地方,因而鱼生存数目最多的地方一般就是本水域中营养物质最多的地方。人工鱼群算法根据这一特点,通过构造人工鱼来模仿鱼群的觅食、聚群、追尾及随机行为,从而实现寻优。

    人工鱼(AF)是真实鱼的仿制品,用于分析和问题解释(Neshat、Sepidnam、Sargolzaei和Toosi(2012))。鱼类大多生活在食物充足的地区,它们通过跟随其他鱼类或单独寻找食物,向食物较多的地区移动。鱼类数量最多的地区通常是食物最多的。每条人工鱼的下一步行为取决于它目前的状态以及局部的环境状态,AF通过自身行为以及同伴的行为来影响环境。

(1)觅食行为(Prey)

bc19885162ee783d1a9e41ed68e56612_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

(2)聚群行为(Swarm)

fa6008444b451a0b482db3ca3afec5d3_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

(3)追尾行为(Follow)

dd98ac67a1d69c99e6a7995114662053_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

(4)随机行为

1b89855117ba8e7f0d12a11dace26fe1_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

(5)行为选择

    这是鱼类的生存习惯,反映出了鱼类的自主行为。在人工鱼群算法中,觅食行为奠定了算法的收敛基础,聚群行为增强了算法收敛的稳定性,追尾行为增强了算法收敛的快速性与全局性,行为选择策略则是为算法收敛的速度与稳定性提供了保障。

3.MATLAB核心程序

yjzl=yjzl;
dxzl=dxzl;
Pi=Pi;
[N,row]=size(Pi);  %N为节点数
fish=40;    %控制参数:人工鱼的条数
visual=7;   %控制参数:视野
delta=0.35;  %控制参数:拥挤度
step=5;     %控制参数:人工鱼移动的步长
maxcalculation=100;    %收敛条件:最大迭代次数
objectvalue=zeros(1,fish);  %食物浓度矩阵(1×fish)
[NN,row]=size(dxzl);   %NN为待选线路的维数
status=rand(fish,NN);  %人工鱼位置状态矩阵status
for i=1:fish
    for j=1:NN
        if status(i,j)<=0.5
            status(i,j)=0;
        else
            status(i,j)=1;
        end
    end
end
minvalue=inf;
for fishnumber=1:fish
    x=status(fishnumber,:);
    [B1,B,BL,NEW,NL,L,nbl]=builtnet(x,dxzl,yjzl);
    [tong]=liantong(N,L,BL);
    if tong>1
        objectvalue(fishnumber)=inf;
    else
       [operate,overflowvalue]=dcflow(N,L,BL,Pi,nbl);
       construction=0;
       for i=1:NEW
           construction=construction+25*B1(i,6);    %计算建设费用每公里线路建设费用取25万元
       end
       objectvalue(fishnumber)=construction+operate+overflowvalue;
    end
   if objectvalue(fishnumber)<minvalue
      minvalue=objectvalue(fishnumber);     %minvalue记录最小的目标函数值
      minfish=status(fishnumber,:);         %minfish记录最小目标函数值所对应的人工鱼的位置
   end
end
%进行行为策略
............................................................................
             [status,objectvalue]=prey(status,fishnumber,objectvalue,visual,fish,NN,N,delta,step,dxzl,yjzl,Pi);
        end
    end
end
for fishnumber=1:fish
    if objectvalue(fishnumber)<minvalue
      minvalue=objectvalue(fishnumber);  
      minfish=status(fishnumber,:); 
    end
end
min2(calculation)=minvalue;
disp(calculation);
disp(minvalue);
%if minvalue<=5900
%    break    
%end
calculation=calculation+1;
end
toc
plot(min2,'-*');
相关文章
|
1天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
3天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
3天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
6月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
272 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
6月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
162 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
6月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
138 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
9月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
9月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
9月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)