基于L2-RLS算法的目标跟踪算法matlab仿真,可处理小范围遮挡问题

简介: 基于L2-RLS算法的目标跟踪算法matlab仿真,可处理小范围遮挡问题

1.算法仿真效果
matlab2022a仿真结果如下:

84d101233c5ee2da939513b0a2808f50_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
6246a8024d17b49e380b17dc5f203565_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
2f585735717ea200f55cdf9bfe03fc2e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
51e12c93f61f24f3d90fda0e719fb122_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
593362e88cd3de1668208763d4411548_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要

   目标表观模型是跟踪器的重要组成部分,用来描述目标表观的特征.基于判别式模型的表观模型用来区分目标和背景;基于生成式模型的表观模型用来描述目标本身,提取出目标的特征.本文合理地融合了判别式模型和生成式模型来对目标进行描述,并利用L2范数最小化对目标表观系数进行求解,取得了比较好的结果.

  训练集U=[U1,U2,…,Um+n]∈Rd×(m+n),包括m个正模板U+∈Rd×,和n个负模板U-∈Rd×n.在初始位置周围手动采集m个图像,归一化后按行堆成向量作为正模板;在离初始位置较远处采集n个图像,利用同样的方法得到负模板.其中初始位置是通过在第一帧中手动标注得到的.采集到的候选样本y∈Rd可以通过训练集线性表示,即

90b80c83c2ecabcf5c89fb17ea8aca12_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

其中,b=[b1,b2,…,bm+n]T∈R(m+n)×1,为线性表示的系数.b是弱稀疏的,利用这一特征通过L2范数最小化进行求解,其中λ为约束参数.

d71d71bb51fcb9b348f887fc436d7ae9_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

L2范数约束项的作用有2个:①它使解b具有一定的稀疏度,但是L2范数的稀疏度远低于L1范数的稀疏度.②它使得最小化的解更加稳定.L2范数最小化很容易求解,令||UTb-y||22+λ||b||22的导数为0,即

09bedf301502b3171cedca30e93e1ede_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

,可得出:

1538d2e437501dc528a32b4847a3b5d6_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

其中I∈Rd×d,是一个单位矩阵,用来确保UTU+λI的可逆性.

    假设一个候选样本在前景模板上有比较小的重构误差就代表该候选样本有可能是目标,在背景模板上有比较小的重构误差就代表这个候选样本有可能是背景,在此基础上根据候选样本在前景模板和背景模板上的重构误差的差异来构造候选样本的置信值:

c3e0387aba15f635338e083f7317cd53_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

其中ρ是一个很小的固定的常数,用来权衡判别分类器的重要性.

3.MATLAB核心程序

temp = importdata([dataPath 'datainfo.txt']);
LoopNum = temp(3);%number of frames
frame = imread([dataPath '1.jpg']);
if  size(frame,3) == 3
    framegray = double(rgb2gray(frame))/255;
else
    framegray = double(frame)/255;
end
%%  p = [px, py, sx, sy, theta];  
param0 = [p(1), p(2), p(3) /opt.tmplsize(1), p(5), p(4)/p(3), 0];      
param0 = affparam2mat(param0);
..............................................................................
B=randblock(sz,opt.blockSizeSmall,opt.blockNumSmall);%% generate squre templates
for f = 1:LoopNum
    CurrentFrame=f
    frame = imread([dataPath int2str(f) '.jpg']);
    if  size(frame,3) == 3
        framegray = double(rgb2gray(frame))/255;
    else
        framegray = double(frame)/255;
    end
    
    %% do tracking
    opt.frameNum = f;
    [param,opt] = L2_Tracker(framegray, tmpl, param, opt,P,B);
    result = [ result; param.est' ];
    if param.wimg~=zeros(opt.tmplsize(1),opt.tmplsize(2));
       wimgs= [wimgs, param.wimg(:)];   
    end
  
    %%Update Model
    if  (size(wimgs,2) >= opt.batchsize)  
        %%(1)Incremental SVD
        [tmpl.basis, tmpl.eigval, tmpl.mean, tmpl.numsample] = ...
        sklm(wimgs, tmpl.basis, tmpl.eigval, tmpl.mean, tmpl.numsample, opt.ff);  
        %%(2)Clear Data Buffer
        wimgs = [];     
        %%(3)Keep "opt.maxbasis" Number Basis Vectors
        if  (size(tmpl.basis,2) > opt.maxbasis)          
            tmpl.basis  = tmpl.basis(:,1:opt.maxbasis);   
            tmpl.eigval = tmpl.eigval(1:opt.maxbasis);    
            W=tmpl.basis;
            Mu=tmpl.mean;
        end
        D=[tmpl.basis,B]; %dictionay 
        P=inv(D'*D+lambda*eye(size(D,2)))*D';% project matrix
    end
end
duration = duration + toc;
fps =f/duration;
%% 
TotalFrameNum=LoopNum;
L2RLSCenterAll  = cell(1,TotalFrameNum);      
L2RLSCornersAll = cell(1,TotalFrameNum);
for num = 1:TotalFrameNum
    if  num <= size(result,1)
        est = result(num,:);
        [ center corners ] = p_to_box([32 32], est);
    end
    L2RLSCenterAll{num}  = center;      
    L2RLSCornersAll{num} = corners;
end
相关文章
|
5天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
6天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
6天前
|
算法 C++ Windows
基于离散差分法的复杂微分方程组求解matlab数值仿真
本程序基于离散差分法求解复杂微分方程组,将连续微分方程转化为差分方程,采用一阶显式时间格式和一阶偏心空间格式。在MATLAB2022a上测试通过,展示了运行结果。
|
8天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
26天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
11天前
|
存储
基于遗传算法的智能天线最佳阵列因子计算matlab仿真
本课题探讨基于遗传算法优化智能天线阵列因子,以提升无线通信系统性能,包括信号质量、干扰抑制及定位精度。通过MATLAB2022a实现的核心程序,展示了遗传算法在寻找最优阵列因子上的应用,显著改善了天线接收功率。
|
13天前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。
|
21天前
|
算法
基于粒子群算法的分布式电源配电网重构优化matlab仿真
本研究利用粒子群算法(PSO)优化分布式电源配电网重构,通过Matlab仿真验证优化效果,对比重构前后的节点电压、网损、负荷均衡度、电压偏离及线路传输功率,并记录开关状态变化。PSO算法通过迭代更新粒子位置寻找最优解,旨在最小化网络损耗并提升供电可靠性。仿真结果显示优化后各项指标均有显著改善。
|
16天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
17天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。