Go sync.Once:简约而不简单的并发利器

简介: 我是陈明勇,本文将详细介绍 Go 语言中的 sync.Once,包括它的基本定义、使用场景和应用实例以及源码分析等。在实际开发中,sync.Once 经常被用于实现单例模式和延迟初始化操作。

简介

在某些场景下,我们需要初始化一些资源,例如单例对象、配置等。实现资源的初始化有多种方法,如定义 package 级别的变量、在 init 函数中进行初始化,或者在 main 函数中进行初始化。这三种方式都能确保并发安全,并在程序启动时完成资源的初始化。

然而,有时我们希望采用延迟初始化的方式,在我们真正需要资源的时候才进行初始化,这种需要确保并发安全,在这种情况下,Go 语言中的 sync.Once 提供一个优雅且并发安全的解决方案,本文将对其进行介绍。

sync.Once 基本概念

什么是 sync.Once

sync.OnceGo 语言中的一种同步原语,用于确保某个操作或函数在并发环境下只被执行一次。它只有一个导出的方法,即 Do,该方法接收一个函数参数。在 Do 方法被调用后,该函数将被执行,而且只会执行一次,即使在多个协程同时调用的情况下也是如此。

sync.Once 的应用场景

sync.Once 主要用于以下场景:

  • 单例模式:确保全局只有一个实例对象,避免重复创建资源。
  • 延迟初始化:在程序运行过程中需要用到某个资源时,通过 sync.Once 动态地初始化该资源。
  • 只执行一次的操作:例如只需要执行一次的配置加载、数据清理等操作。

sync.Once 应用实例

单例模式

在单例模式中,我们需要确保一个结构体只被初始化一次。使用 sync.Once 可以轻松实现这一目标。

package main
import (
   "fmt"
   "sync"
)
type Singleton struct{}
var (
   instance *Singleton
   once     sync.Once
)
func GetInstance() *Singleton {
   once.Do(func() {
      instance = &Singleton{}
   })
   return instance
}
func main() {
   var wg sync.WaitGroup
   for i := 0; i < 5; i++ {
      wg.Add(1)
      go func() {
         defer wg.Done()
         s := GetInstance()
         fmt.Printf("Singleton instance address: %p\n", s)
      }()
   }
   wg.Wait()
}
复制代码

上述代码中,GetInstance 函数通过 once.Do() 确保 instance 只会被初始化一次。在并发环境下,多个协程同时调用 GetInstance 时,只有一个协程会执行 instance = &Singleton{},所有协程得到的实例 s 都是同一个。

延迟初始化

有时候希望在需要时才初始化某些资源。使用 sync.Once 可以实现这一目标。

package main
import (
   "fmt"
   "sync"
)
type Config struct {
   config map[string]string
}
var (
   config *Config
   once   sync.Once
)
func GetConfig() *Config {
   once.Do(func() {
      fmt.Println("init config...")
      config = &Config{
         config: map[string]string{
            "c1": "v1",
            "c2": "v2",
         },
      }
   })
   return config
}
func main() {
   // 第一次需要获取配置信息,初始化 config
   cfg := GetConfig()
   fmt.Println("c1: ", cfg.config["c1"])
   // 第二次需要,此时 config 已经被初始化过,无需再次初始化
   cfg2 := GetConfig()
   fmt.Println("c2: ", cfg2.config["c2"])
}
复制代码

在这个示例中,定义了一个 Config 结构体,它包含一些设置信息。使用 sync.Once 来实现 GetConfig 函数,该函数在第一次调用时初始化 Config。这样,我们可以在真正需要时才初始化 Config,从而避免不必要的开销。

sync.Once 实现原理

type Once struct {
   // 表示是否执行了操作
   done uint32
   // 互斥锁,确保多个协程访问时,只能一个协程执行操作
   m    Mutex
}
func (o *Once) Do(f func()) {
   // 判断 done 的值,如果是 0,说明 f 还没有被执行过
   if atomic.LoadUint32(&o.done) == 0 {
      // 构建慢路径(slow-path),以允许对 Do 方法的快路径(fast-path)进行内联
      o.doSlow(f)
   }
}
func (o *Once) doSlow(f func()) {
   // 加锁
   o.m.Lock()
   defer o.m.Unlock()
   // 双重检查,避免 f 已被执行过
   if o.done == 0 {
      // 修改 done 的值
      defer atomic.StoreUint32(&o.done, 1)
      // 执行函数
      f()
   }
}
复制代码

sync.Once 结构体包含两个字段:donemudone 是一个 uint32 类型的变量,用于表示操作是否已经执行过;m 是一个互斥锁,用于确保在多个协程访问时,只有一个协程能执行操作。

sync.Once 结构体包含两个方法:DodoSlowDo 方法是其核心方法,它接收一个函数参数 f。首先它会通过原子操作atomic.LoadUint32(保证并发安全) 检查 done 的值,如果为 0,表示 f 函数没有被执行过,然后执行 doSlow 方法。

doSlow 方法里,首先对互斥锁 m 进行加锁,确保在多个协程访问时,只有一个协程能执行 f 函数。接着再次检查 done 变量的值,如果 done 的值仍为 0,说明 f 函数没有被执行过,此时执行 f 函数,最后通过原子操作 atomic.StoreUint32done 变量的值设置为 1。

为什么会封装一个 doSlow 方法

doSlow 方法的存在主要是为了性能优化。将慢路径(slow-path)代码从 Do 方法中分离出来,使得 Do 方法的快路径(fast-path)能够被内联(inlined),从而提高性能。

为什么会有双重检查(double check)的写法

从源码可知,存在两次对 done 的值的判断。

  • 第一次检查:在获取锁之前,先使用原子加载操作 atomic.LoadUint32 检查 done 变量的值,如果 done 的值为 1,表示操作已执行,此时直接返回,不再执行 doSlow 方法。这一检查可以避免不必要的锁竞争。
  • 第二次检查:获取锁之后,再次检查 done 变量的值,这一检查是为了确保在当前协程获取锁期间,其他协程没有执行过 f 函数。如果 done 的值仍为 0,表示 f 函数没有被执行过。

通过双重检查,可以在大多数情况下避免锁竞争,提高性能。

加强的 sync.Once

sync.Once 提供的 Do 方法并没有返回值,意味着如果我们传入的函数如果发生 error 导致初始化失败,后续调用 Do 方法也不会再初始化。为了避免这个问题,我们可以实现一个 类似 sync.Once 的并发原语。

package main
import (
   "sync"
   "sync/atomic"
)
type Once struct {
   done uint32
   m    sync.Mutex
}
func (o *Once) Do(f func() error) error {
   if atomic.LoadUint32(&o.done) == 0 {
      return o.doSlow(f)
   }
   return nil
}
func (o *Once) doSlow(f func() error) error {
   o.m.Lock()
   defer o.m.Unlock()
   var err error
   if o.done == 0 {
      err = f()
      // 只有没有 error 的时候,才修改 done 的值
      if err == nil {
         atomic.StoreUint32(&o.done, 1)
      }
   }
   return err
}
复制代码

上述代码实现了一个加强的 Once 结构体。与标准的 sync.Once 不同,这个实现允许 Do 方法的函数参数返回一个 error。如果执行函数没有返回 error,则修改 done 的值以表示函数已执行。这样,在后续的调用中,只有在没有发生 error 的情况下,才会跳过函数执行,避免初始化失败。

sync.Once 的注意事项

死锁

通过分析 sync.Once 的源码,可以看到它包含一个名为 m 的互斥锁字段。当我们在 Do 方法内部重复调用 Do 方法时,将会多次尝试获取相同的锁。但是 mutex 互斥锁并不支持可重入操作,因此这将导致死锁现象。

func main() {
   once := sync.Once{}
   once.Do(func() {
      once.Do(func() {
         fmt.Println("init...")
      })
   })
}
复制代码

初始化失败

这里的初始化失败指的是在调用 Do 方法之后,执行 f 函数的过程中发生 error,导致执行失败,现有的 sync.Once 设计我们是无法感知到初始化的失败的,为了解决这个问题,我们可以实现一个类似 sync.Once 的加强 once,前面的内容已经提供了具体实现。

小结

本文详细介绍了 Go 语言中的 sync.Once,包括它的基本定义、使用场景和应用实例以及源码分析等。在实际开发中,sync.Once 经常被用于实现单例模式和延迟初始化操作。

虽然 sync.Once 简单而又高效,但是错误的使用可能会造成一些意外情况,需要格外小心。

总之,sync.OnceGo 中非常实用的一个并发原语,可以帮助开发者实现各种并发场景下的安全操作。如果遇到只需要初始化一次的场景,sync.Once 是一个非常好的选择。

目录
相关文章
|
4天前
|
人工智能 Go 调度
掌握Go并发:Go语言并发编程深度解析
掌握Go并发:Go语言并发编程深度解析
|
4天前
|
安全 Java Go
Java vs. Go:并发之争
【4月更文挑战第20天】
25 1
|
4天前
|
Go 调度 开发者
CSP模型与Goroutine调度的协同作用:构建高效并发的Go语言世界
【2月更文挑战第17天】在Go语言的并发编程中,CSP模型与Goroutine调度机制相互协同,共同构建了高效并发的运行环境。CSP模型通过通道(channel)实现了进程间的通信与同步,而Goroutine调度机制则确保了并发任务的合理调度与执行。本文将深入探讨CSP模型与Goroutine调度的协同作用,分析它们如何共同促进Go语言并发性能的提升。
|
4天前
|
存储 算法 编译器
掌握Go语言:探索Go语言递归函数的高级奥秘,优化性能、实现并发、解决算法难题(28)
掌握Go语言:探索Go语言递归函数的高级奥秘,优化性能、实现并发、解决算法难题(28)
|
4天前
|
SQL Go 数据库
【Go语言专栏】Go语言中的事务处理与并发控制
【4月更文挑战第30天】Go语言在数据库编程中支持事务处理和并发控制,确保ACID属性和多用户环境下的数据完整性。`database/sql`包提供事务管理,如示例所示,通过`Begin()`、`Commit()`和`Rollback()`执行和控制事务。并发控制利用Mutex、WaitGroup和Channel防止数据冲突。结合事务与并发控制,开发者可处理复杂场景,实现高效、可靠的数据库应用。
|
4天前
|
Cloud Native Go 云计算
多范式编程语言Go:并发与静态类型的结合
Go语言是Google于2007年开发的开源编程语言,旨在提高程序开发和部署的效率。它的独特特征在于结合了并发处理与静态类型系统,提供了简洁、高效、并行处理能力的编程体验。本文将探讨Go语言的特点、应用场景以及其在现代软件开发中的优势。
|
4天前
|
安全 Go
Golang深入浅出之-Go语言中的并发安全队列:实现与应用
【5月更文挑战第3天】本文探讨了Go语言中的并发安全队列,它是构建高性能并发系统的基础。文章介绍了两种实现方法:1) 使用`sync.Mutex`保护的简单队列,通过加锁解锁确保数据一致性;2) 使用通道(Channel)实现无锁队列,天生并发安全。同时,文中列举了并发编程中常见的死锁、数据竞争和通道阻塞问题,并给出了避免这些问题的策略,如明确锁边界、使用带缓冲通道、优雅处理关闭以及利用Go标准库。
26 5
|
4天前
|
存储 缓存 安全
Golang深入浅出之-Go语言中的并发安全容器:sync.Map与sync.Pool
Go语言中的`sync.Map`和`sync.Pool`是并发安全的容器。`sync.Map`提供并发安全的键值对存储,适合快速读取和少写入的情况。注意不要直接遍历Map,应使用`Range`方法。`sync.Pool`是对象池,用于缓存可重用对象,减少内存分配。使用时需注意对象生命周期管理和容量控制。在多goroutine环境下,这两个容器能提高性能和稳定性,但需根据场景谨慎使用,避免不当操作导致的问题。
35 4
|
4天前
|
安全 Go 开发者
Golang深入浅出之-Go语言中的CSP模型:深入理解并发哲学
【5月更文挑战第2天】Go语言的并发编程基于CSP模型,强调通过通信共享内存。核心概念是goroutines(轻量级线程)和channels(用于goroutines间安全数据传输)。常见问题包括数据竞争、死锁和goroutine管理。避免策略包括使用同步原语、复用channel和控制并发。示例展示了如何使用channel和`sync.WaitGroup`避免死锁。理解并发原则和正确应用CSP模型是编写高效安全并发程序的关键。
35 4
|
4天前
|
安全 Go 开发者
Golang深入浅出之-Go语言中的CSP模型:深入理解并发哲学
【5月更文挑战第1天】Go语言基于CSP理论,借助goroutines和channels实现独特的并发模型。Goroutine是轻量级线程,通过`go`关键字启动,而channels提供安全的通信机制。文章讨论了数据竞争、死锁和goroutine泄漏等问题及其避免方法,并提供了一个生产者消费者模型的代码示例。理解CSP和妥善处理并发问题对于编写高效、可靠的Go程序至关重要。
26 2