【多机器人】基于拓扑图和跟随领导者机器人编队路径规划附matlab代码

简介: 【多机器人】基于拓扑图和跟随领导者机器人编队路径规划附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

多智能体系统通过协作能够完成个体无法完成的复杂任务,具有任务执行效率高,能源消耗少,个体故障风险低等诸多优点,因此在工业生产,交通运输,军事攻防,航空航天等领域具有广泛的应用.编队控制问题是多智能体系统的基础和关键性问题,本文以智能轮式移动机器人为研究对象,采用领导者-跟随者编队策略,对编队机器人系统协调性与个体机器人稳定性控制展开深入研究.

⛄ 部分代码

function [ area ] = compute_area(x,y,range)

%UNTITLED4 此处显示有关此函数的摘要

%   此处显示详细说明

if(nargin==2)

   range=10;

end


if(x>=0)

   num_x=floor(x(1)/range);

   x1=num_x*range;

   x2=(num_x+1)*range;

else

   num_x=floor(x(1)/-range);

   x1=-range*(num_x+1);

   x2=-range*num_x;

end

if(y>=0)

   num_y=floor(y(1)/range);

   y1=num_y*range;

   y2=(num_y+1)*range;

else

   num_y=floor(y(1)/-range);

   y1=-range*(num_y+1);

   y2=-range*num_y;

end

% area=[x1-3 x2+3 y1-3 y2+3];

area=[-5 30 -5 30];

end

⛄ 运行结果

⛄ 参考文献

[1] 贾瑞明. 基于领导者-跟随者策略的多轮式移动机器人编队控制方法[D]. 大连理工大学.

[2] 杨承帅. 具有异质扰动的多移动机器人的分布式集结与跟踪[D]. 厦门大学.

[3] 王春平, 潘海鹏. 基于领导者和跟随者编队的轮式机器人系统设计[J]. 制造业自动化, 2020, 42(9):5.

[4] 黄晨. 多机器人编队控制算法的研究与实现[D]. 哈尔滨工业大学, 2012.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
15天前
|
机器学习/深度学习 算法 机器人
基于QLearning强化学习的较大规模栅格地图机器人路径规划matlab仿真
本项目基于MATLAB 2022a,通过强化学习算法实现机器人在栅格地图中的路径规划。仿真结果显示了机器人从初始位置到目标位置的行驶动作序列(如“下下下下右右...”),并生成了详细的路径图。智能体通过Q-Learning算法与环境交互,根据奖励信号优化行为策略,最终学会最优路径。核心程序实现了效用值排序、状态转换及动作选择,并输出机器人行驶的动作序列和路径可视化图。
164 85
|
4天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
|
17天前
|
算法
基于RRT优化算法的机械臂路径规划和避障matlab仿真
本课题基于RRT优化算法实现机械臂路径规划与避障。通过MATLAB2022a进行仿真,先利用RRT算法计算避障路径,再将路径平滑处理,并转换为机械臂的关节角度序列,确保机械臂在复杂环境中无碰撞移动。系统原理包括随机生成树结构探索空间、直线扩展与障碍物检测等步骤,最终实现高效路径规划。
|
3月前
|
机器学习/深度学习 算法 数据可视化
基于QLearning强化学习的机器人避障和路径规划matlab仿真
本文介绍了使用MATLAB 2022a进行强化学习算法仿真的效果,并详细阐述了Q-Learning原理及其在机器人避障和路径规划中的应用。通过Q-Learning算法,机器人能在未知环境中学习到达目标的最短路径并避开障碍物。仿真结果展示了算法的有效性,核心程序实现了Q表的更新和状态的可视化。未来研究可扩展至更复杂环境和高效算法。![](https://ucc.alicdn.com/pic/developer-ecology/nymobwrkkdwks_d3b95a2f4fd2492381e1742e5658c0bc.gif)等图像展示了具体仿真过程。
173 0
|
3月前
|
机器学习/深度学习 传感器 安全
基于模糊神经网络的移动机器人路径规划matlab仿真
该程序利用模糊神经网络实现移动机器人的路径规划,能在含5至7个静态未知障碍物的环境中随机导航。机器人配备传感器检测前方及其两侧45度方向上的障碍物距离,并根据这些数据调整其速度和方向。MATLAB2022a版本下,通过模糊逻辑处理传感器信息,生成合理的路径,确保机器人安全到达目标位置。以下是该程序在MATLAB2022a下的测试结果展示。
|
2月前
|
人工智能 自然语言处理 算法
具身智能高校实训解决方案 ----从AI大模型+机器人到通用具身智能
在具身智能的发展历程中,AI 大模型的出现成为了关键的推动力量。高校作为培养未来科技人才的摇篮,需要紧跟这一前沿趋势,开展具身智能实训课程。通过将 AI 大模型与具备 3D 视觉的机器人相结合,为学生搭建一个实践平台。
245 64
|
28天前
|
机器学习/深度学习 人工智能 算法
人工智能与机器人的结合:智能化世界的未来
人工智能与机器人的结合:智能化世界的未来
194 32
|
11天前
|
数据采集 监控 数据可视化
优锘科技携手逐际动力,共创数字孪生与具身智能机器人新未来
近日,优锘科技与逐际动力正式宣布达成战略合作,双方将在业务和技术领域展开深度协作,共同探索数字孪生与具身智能机器人的融合应用。这一合作无疑将为智能科技领域注入全新动力,推动行业智能化转型迈向更高水平。
|
1月前
|
人工智能 自然语言处理 机器人
机器人迈向ChatGPT时刻!清华团队首次发现具身智能Scaling Laws
清华大学研究团队在机器人操作领域发现了数据规模定律,通过大规模数据训练,机器人策略的泛化性能显著提升。研究揭示了环境和对象多样性的重要性,提出了高效的數據收集策略,使机器人在新环境中成功率达到约90%。这一发现有望推动机器人技术的发展,实现更广泛的应用。
81 26
|
2月前
|
算法 机器人 语音技术
由通义千问驱动的人形机器人具身智能Multi-Agent系统
申昊科技人形机器人小昊,集成通义千问多模态大模型的具身智能系统,旨在讲解销售、迎宾表演等场景。机器人通过语音、动作等方式与用户互动,利用云端大语言模型处理自然语言,结合视觉、听觉等多模态感知技术,实现流畅的人机对话、目标追踪、展厅讲解等功能。
274 4
由通义千问驱动的人形机器人具身智能Multi-Agent系统

热门文章

最新文章