【人脸识别】基于模板匹配实现人脸识别附matlab代码和GUI界面

本文涉及的产品
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,视频资源包5000点
视觉智能开放平台,分割抠图1万点
简介: 【人脸识别】基于模板匹配实现人脸识别附matlab代码和GUI界面

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

人脸识别是模式识别和机器视觉领域非常重要的一个课题,具有重要的理论价值和广泛的应用场景.采用人脸识别演绎模式识别和机器视觉中一些重要的概念和算法,能够使学生理论联系实际,培养利用理论知识解决实际工程问题的能力.利用Matlab GUI组件,设计实现了能够与用户交互人脸识别教学平台,其中包括图像读写,预处理,特征提取和特征匹配等模块,较好的展示了人脸识别的主要步骤,使学生直观的掌握人脸识别的相关概念,理论和算法.

⛄ 部分代码

function [m, A, Eigenfaces,D] = EigenfaceCore(T)

   


%%%求样本的平均向量

m = mean(T,2); % Computing the average face image m = (1/P)*sum(Tj's)    (j = 1 : P)

Train_Number = size(T,2);


%%%%计算每个样本与平均向量的差向量

A = [];  

for i = 1 : Train_Number

   temp = double(T(:,i)) - m; %计算每个样本的减去平均人脸

   A = [A temp]; % 合成一个N*N矩阵

end


%%%%%%%%%%%%%%%%%%%%%%%% 求解特征值和特征向量



L = A'*A; %.计算协方差矩阵

[V D] = eig(L); %.求特征向量和特征


% 选取特征向量

L_eig_vec = [];

for i = 1 : size(V,2)

   if( D(i,i)>1 )

       L_eig_vec = [L_eig_vec V(:,i)];

   end

end


% 降维

Eigenfaces = A * L_eig_vec; % 特征脸获取

⛄ 运行结果

⛄ 参考文献

[1] 陈熙. 基于MatlabGUI的人脸识别教学平台设计[J]. 甘肃科技, 2018, 34(10):3.

[2] 刘向东. 基于PCA算法人脸识别的MATLAB实现[J]. 电脑知识与技术:学术版, 2016(4X):2.

[3] 戴志远, 闫克丁, 杨树蔚,等. 基于模板匹配的人脸识别跟踪方法研究[J]. 上海电力大学学报, 2021, 37(1):7.

[4] 高文, 张文超, 山世光,等. 一种基于模板匹配的人脸识别方法:, CN1790374A[P]. 2006.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
1月前
|
机器学习/深度学习 算法 固态存储
m基于深度学习的卫星遥感图像轮船检测系统matlab仿真,带GUI操作界面
在MATLAB 2022a中,使用GoogLeNet对卫星遥感图像进行轮船检测,展示了高效的目标识别。GoogLeNet的Inception架构结合全局平均池化增强模型泛化性。核心代码将图像切块并分类,预测为轮船的部分被突出显示,体现了深度学习在复杂场景检测中的应用。
132 8
|
29天前
|
算法
基于极大似然法和最小二乘法系统参数辨识matlab仿真,包含GUI界面
该程序对比了基于极大似然法和最小二乘法的系统参数辨识,输出辨识收敛曲线和误差。在MATLAB2022a中运行,显示了测试结果。核心代码涉及矩阵运算和循环,用于更新和计算系统参数。算法原理部分解释了辨识的目的是建立数学模型,并介绍了极大似然法(基于概率统计)和最小二乘法(基于误差平方和最小化)两种方法。
|
1月前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,带GUI界面,对比BP,RBF,LSTM
这是一个基于MATLAB2022A的金融数据预测仿真项目,采用GUI界面,比较了CNN、BP、RBF和LSTM四种模型。CNN和LSTM作为深度学习技术,擅长序列数据预测,其中LSTM能有效处理长序列。BP网络通过多层非线性变换处理非线性关系,而RBF网络利用径向基函数进行函数拟合和分类。项目展示了不同模型在金融预测领域的应用和优势。
|
26天前
|
机器学习/深度学习 数据采集 算法
m基于Googlenet深度学习的运动项目识别系统matlab仿真,包括GUI界面
**摘要:** 在MATLAB 2022a中,基于GoogLeNet的运动识别系统展示优秀性能。GoogLeNet,又称Inception网络,通过结合不同尺寸卷积核的Inception模块实现深度和宽度扩展,有效识别复杂视觉模式。系统流程包括数据预处理、特征提取(前端层学习基础特征,深层学习运动模式)、池化、Dropout及全连接层分类。MATLAB程序示例展示了选择图像、预处理后进行分类的交互过程。当按下按钮,图像被读取、调整大小并输入网络,最终通过classify函数得到预测标签。
12 0
|
2月前
|
算法 计算机视觉 异构计算
基于肤色模型的人脸识别FPGA实现,包含tb测试文件和MATLAB辅助验证
这是一个关于肤色检测算法的摘要:使用MATLAB 2022a和Vivado 2019.2进行测试和仿真,涉及图像预处理、RGB到YCbCr转换、肤色模型(基于阈值或概率)以及人脸检测。核心程序展示了如何读取图像数据并输入到FPGA处理,通过`tops`模块进行中值滤波、颜色空间转换及人脸检测,最终结果输出到"face.txt"。
|
2月前
|
机器学习/深度学习 算法 API
【Paddle】PCA线性代数基础 + 领域应用:人脸识别算法(1.1w字超详细:附公式、代码)
【Paddle】PCA线性代数基础 + 领域应用:人脸识别算法(1.1w字超详细:附公式、代码)
56 0
|
2月前
|
数据安全/隐私保护
地震波功率谱密度函数、功率谱密度曲线,反应谱转功率谱,matlab代码
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
|
2月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
2月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)

热门文章

最新文章