可视化CNN和特征图

简介: 卷积神经网络(cnn)是一种神经网络,通常用于图像分类、目标检测和其他计算机视觉任务。CNN的关键组件之一是特征图,它是通过对图像应用卷积滤波器生成的输入图像的表示。

理解卷积层

1、卷积操作

卷积的概念是CNN操作的核心。卷积是一种数学运算,它把两个函数结合起来产生第三个函数。在cnn的上下文中,这两个函数是输入图像和滤波器,而得到的结果就是特征图。

2、卷积的层

卷积层包括在输入图像上滑动滤波器,并计算滤波器与输入图像的相应补丁之间的点积。然后将结果输出值存储在特征映射中的相应位置。通过应用多个过滤器,每个过滤器检测一个不同的特征,我们可以生成多个特征映射。

3、重要参数

Stride: Stride 是指卷积滤波器在卷积运算过程中在输入数据上移动的步长。

Padding:Padding是指在应用卷积操作之前在输入图像或特征映射的边界周围添加额外像素。

Padding的目的是控制输出特征图的大小,保证滤波窗口能够覆盖输入图像或特征图的边缘。如果没有填充,过滤器窗口将无法覆盖输入数据的边缘,导致输出特征映射的大小减小和信息丢失。有两种类型的填充“valid”和“same”。

kernel/filter :kernel(也称为filter 或 weight )是一个可学习参数的小矩阵,用于从输入数据中提取特征。

在下图中,输入图像的大小为(5,5),过滤器filter 的大小为(3,3),绿色为输入图像,黄色区域为该图像的过滤器。在输入图像上滑动滤波器,计算滤波器与输入图像的相应像素之间的点积。Padding是valid (也就是没有填充)。stride值为1。

4、特征图:

特征图是卷积神经网络(CNN)中卷积层的输出。它们是二维数组,包含卷积滤波器从输入图像或信号中提取的特征。

卷积层中特征图的数量对应于该层中使用的过滤器的数量。每个过滤器通过对输入数据应用卷积操作来生成单个特征映射。

特征图的大小取决于输入数据的大小,卷积操作中使用的过滤器、填充和步幅的大小。通常,随着我们深入网络,特征图的大小会减小,而特征图的数量会增加。特征图的大小可以用以下公式计算:

 Output_Size = (Input_Size  -  Filter_Size + 2 * Padding) / Stride + 1

这个公式非常重要,因为在计算输出时肯定会用到,所以一定要记住

来自一个卷积层的特征映射作为网络中下一层的输入数据。随着层数的增加,网络能够学习越来越复杂和抽象的特征。通过结合来自多层的特征,网络可以识别输入数据中的复杂模式,并做出准确的预测。

特征图可视化

这里我们使用TF作为框架进行演示

 ## Importing libraries
 # Image processing library
 importcv2
 # Keras from tensorflow
 importkeras
 # In Keras, the layers module provides a set of pre-built layer classes that can be used to construct neural networks.
 fromkerasimportlayers
 # For ploting graphs and images
 importmatplotlib.pyplotasplt
 importnumpyasnp

使用OpenCV导入一张图像,并将其大小调整为224 x 224像素。

 img_size = (224, 224)
 file_name = "./data/archive/flowers/iris/10802001213_7687db7f0c_c.jpg"
 img = cv2.imread(file_name)      # reading the image
 img = cv2.resize(img, img_size)

我们添加2个卷积层:

 model = keras.Sequential()
 filters = 16
 model.add(layers.Conv2D(input_shape = (224, 224, 3),filters = filters, kernel_size= 3))
 model.add(layers.Conv2D(filters = filters, kernel_size= 3))

从卷积层中获取过滤器。

 filters, bias = model.layers[0].get_weights()
 min_filter = filters.min()
 max_filter = filters.max()
 filters = (filters - min_filter) / (max_filter - min_filter)p

可视化

 figure = plt.figure(figsize= (10, 20))
 filters_count = filters.shape[-1]
 channels = filters.shape[0]
 index = 1
 for channel in range(channels):
     for filter in range(filters_count):
         plt.subplot(filters_count, channels, index)
         plt.imshow(filters[channel, :, :, filter])
         plt.xticks([])
         plt.yticks([])
         index+=1
 plt.show()

将图像输入到模型中得到特征图

 normalized_img = (img - img.min()) / (img.max() - img.min())
 normalized_img =  normalized_img.reshape(-1, 224, 224, 3)
 feature_map = model.predict(normalized_img)

特征图需要进行归一化这样才可以在matplotlib中显示

 feature_map = (feature_map - feature_map.min())/ (feature_map.max() - feature_map.min())

提取特征图并显示

 total_imgs = feature_map.shape[0]
 no_features = feature_map.shape[-1]
 fig = plt.figure(figsize=(10, 50))
 index = 1
 
 for image_no in range(total_imgs):
     for feature in range(no_features):
         # plotting for 16 filters that produced 16 feature maps
         plt.subplot(no_features, 3, index)
         plt.imshow(feature_map[image_no, :, :, feature], cmap="gray")
         plt.xticks([])
         plt.yticks([])
         index+=1
 plt.show()

总结

通过可视化CNN不同层的特征图,可以更好地理解网络在处理图像时“看到”的是什么。例如,第一层可能会学习简单的特征,如边缘和角落,而后面的层可能会学习更抽象的特征,如特定物体的存在。通过查看特征图,我们还可以识别图像中对网络决策过程重要的区域。

https://avoid.overfit.cn/post/1132e4f9872a490e95bcbd0477d38426

作者:Ahzam Ejaz

目录
相关文章
|
7月前
|
机器学习/深度学习 算法 TensorFlow
文本分类识别Python+卷积神经网络算法+TensorFlow模型训练+Django可视化界面
文本分类识别Python+卷积神经网络算法+TensorFlow模型训练+Django可视化界面
127 0
文本分类识别Python+卷积神经网络算法+TensorFlow模型训练+Django可视化界面
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
图神经网络是一类用于处理图结构数据的神经网络。与传统的深度学习模型(如卷积神经网络CNN和循环神经网络RNN)不同,
图神经网络是一类用于处理图结构数据的神经网络。与传统的深度学习模型(如卷积神经网络CNN和循环神经网络RNN)不同,
|
7月前
|
机器学习/深度学习 数据可视化 数据挖掘
R语言深度学习卷积神经网络 (CNN)对 CIFAR 图像进行分类:训练与结果评估可视化
R语言深度学习卷积神经网络 (CNN)对 CIFAR 图像进行分类:训练与结果评估可视化
|
机器学习/深度学习 数据可视化 网络架构
CAM, Grad-CAM, Grad-CAM++可视化CNN方式的代码实现和对比
当使用神经网络时,我们可以通过它的准确性来评估模型的性能,但是当涉及到计算机视觉问题时,不仅要有最好的准确性,还要有可解释性和对哪些特征/数据点有助于做出决策的理解。模型专注于正确的特征比模型的准确性更重要。
287 0
|
机器学习/深度学习 人工智能 数据可视化
人工智能创新挑战赛:助力精准气象和海洋预测Baseline[2]:数据探索性分析(温度风场可视化)、CNN+LSTM模型建模
人工智能创新挑战赛:助力精准气象和海洋预测Baseline[2]:数据探索性分析(温度风场可视化)、CNN+LSTM模型建模
人工智能创新挑战赛:助力精准气象和海洋预测Baseline[2]:数据探索性分析(温度风场可视化)、CNN+LSTM模型建模
|
机器学习/深度学习 编解码 数据可视化
【计算机视觉】CNN 可视化算法 CAM & Grad-CAM
CAM 算法是论文《Learning Deep Features for Discriminative Localization》中提出的,作者发现 CNN 网络虽然在训练时可能未提供对象的位置,但是仍然具有很强的定位特征能力。 《Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization》论文提出的 Grad-CAM 算法,Grad-CAM 利用网络反向传播的梯度计算出 feature map 每一个通道的权重从而得到热力图。因此 Grad-CAM 可以直接用于各种 CNN 网络而无需重新训
|
机器学习/深度学习 算法
基于步态能量图和CNN卷积神经网络的人体步态识别matlab仿真
基于步态能量图和CNN卷积神经网络的人体步态识别matlab仿真
378 0
基于步态能量图和CNN卷积神经网络的人体步态识别matlab仿真
|
机器学习/深度学习 数据可视化 算法框架/工具
【深度学习系列】CNN模型的可视化
【深度学习系列】CNN模型的可视化
198 0
【深度学习系列】CNN模型的可视化
|
机器学习/深度学习 数据可视化 PyTorch

热门文章

最新文章