《Hadoop与大数据挖掘》——1.2 大数据平台

简介:

本节书摘来自华章计算机《Hadoop与大数据挖掘》一书中的第1章,第1.2节,作者 张良均 樊哲 位文超 刘名军 许国杰 周龙 焦正升,更多章节内容可以访问云栖社区“华章计算机”公众号查看。

1.2 大数据平台

大数据平台有哪些呢?

一般认为大数据平台分为两个方面,硬件平台和软件平台。硬件平台一般如Open-Stack、Amazon云平台、阿里云计算等,类似这样的平台其实做的是虚拟化,即把多台机器或一台机器虚拟化成一个资源池,然后给成千上万人用,各自租用相应的资源服务等。而软件平台则是大家经常听到的,如Hadoop、MapReduce、Spark等,也可以狭义理解为Hadoop生态圈,即把多个节点资源(可以是虚拟节点资源)进行整合,作为一个集群对外提供存储和运算分析服务。

Hadoop生态圈大数据平台,可以大概分为3种:Apache Hadoop(原生开源Hadoop)、Hadoop Distribution(Hadoop发行版)、Big Data Suite(大数据开发套件)。Apache Hadoop 是原生的,即官网提供的,只包含基本的软件;Hadoop Distribution是一些软件供应商提供的,具有的功能相对多,这个版本有收费版也有免费版,用户可选;而大数据开发套件则是一些大公司提供的集成方案,提供的功能更多,但是相应的也比较贵。

Apache Hadoop是开源的,用户可以直接访问或更改代码。它是完全分布式的,配置包含用户权限、访问控制等,再加上多种生态系统软件支持,比较复杂。这里涉及版本不兼容性问题。所以该版本比较适合学习并理解底层细节或Hadoop详细配置、调优等。

Hadoop Distribution版本简化了用户的操作以及开发任务,比如可以一键部署等,而且有配套的生态圈支持以及管理监控功能,如业内广泛使用的HDP、CDH、MapR等平台。CDH是最成型的发行版本,拥有最多的部署案例,而且提供强大的部署、管理和监控工具,其开发公司Cloudera贡献了自己的可实时处理大数据的Impala项目。HDP是100%开源Apache Hadoop的唯一提供商,其开发公司 Hortonworks开发了很多增强特性并提交至核心主干,并且Hortonworks为入门者提供了一个非常好的、易于使用的沙盒。MapR为了获取更好的性能和易用性而支持本地UNIX文件系统而不是HDFS(使用非开源的组件),并且可以使用本地UNIX命令来代替Hadoop命令。除此之外,MapR还凭借诸如快照、镜像或有状态的故障恢复之类的高可用性特性来与其他竞争者相区别。当需要一个简单的学习环境时,就可以选用这个版本,当然,针对一些企业也可以选择这个版本的收费版,也是有很多软件支持的。

Big Data Suite(大数据套件)是建立在Eclipse之类的IDE之上的,其附加的插件极大地方便了大数据应用的开发。用户可以在自己熟悉的开发环境之内创建、构建并部署大数据服务,并且生成所有的代码,从而做到不用编写、调试、分析和优化MapReduce代码。大数据套件提供了图形化的工具来为你的大数据服务进行建模,所有需要的代码都是自动生成的,只需配置某些参数即可实现复杂的大数据作业。当企业用户需要不同的数据源集成、自动代码生成或大数据作业自动图形化调度时,就可以选择使用大数据套件。

相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
3月前
|
SQL 人工智能 分布式计算
ODPS十五周年实录|构建 AI 时代的大数据基础设施
本文根据 ODPS 十五周年·年度升级发布实录整理而成,演讲信息如下: 张治国:阿里云智能集团技术研究员、阿里云智能计算平台事业部 ODPS-MaxCompute 负责人 活动:【数据进化·AI 启航】ODPS 年度升级发布
203 9
|
5月前
|
存储 分布式计算 大数据
【赵渝强老师】阿里云大数据存储计算服务:MaxCompute
阿里云MaxCompute是快速、全托管的TB/PB级数据仓库解决方案,提供海量数据存储与计算服务。支持多种计算模型,适用于大规模离线数据分析,具备高安全性、低成本、易用性强等特点,助力企业高效处理大数据。
296 0
|
3月前
|
SQL 存储 分布式计算
【万字长文,建议收藏】《高性能ODPS SQL章法》——用古人智慧驾驭大数据战场
本文旨在帮助非专业数据研发但是有高频ODPS使用需求的同学们(如数分、算法、产品等)能够快速上手ODPS查询优化,实现高性能查数看数,避免日常工作中因SQL任务卡壳、失败等情况造成的工作产出delay甚至集群资源稳定性问题。
1150 36
【万字长文,建议收藏】《高性能ODPS SQL章法》——用古人智慧驾驭大数据战场
|
3月前
|
存储 分布式计算 资源调度
【赵渝强老师】阿里云大数据MaxCompute的体系架构
阿里云MaxCompute是快速、全托管的EB级数据仓库解决方案,适用于离线计算场景。它由计算与存储层、逻辑层、接入层和客户端四部分组成,支持多种计算任务的统一调度与管理。
364 1
|
5月前
|
SQL 分布式计算 数据挖掘
你以为大数据只是存?其实真正的“宝藏”藏在这招里——数据挖掘!
你以为大数据只是存?其实真正的“宝藏”藏在这招里——数据挖掘!
201 1
|
6月前
|
存储 缓存 分布式计算
OSS大数据分析集成:MaxCompute直读OSS外部表优化查询性能(减少数据迁移的ETL成本)
MaxCompute直读OSS外部表优化方案,解决传统ETL架构中数据同步延迟高、传输成本大、维护复杂等问题。通过存储格式优化(ORC/Parquet)、分区剪枝、谓词下推与元数据缓存等技术,显著提升查询性能并降低成本。结合冷热数据分层与并发控制策略,实现高效数据分析。
182 2
|
9月前
|
存储 分布式计算 Hadoop
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
499 79
|
6月前
|
人工智能 分布式计算 大数据
构建AI时代的大数据基础设施-MaxCompute多模态数据处理最佳实践
本文介绍了大数据与AI一体化架构的演进及其实现方法,重点探讨了Data+AI开发全生命周期的关键步骤。文章分析了大模型开发中的典型挑战,如数据管理混乱、开发效率低下和运维管理困难,并提出了解决方案。同时,详细描述了MaxCompute在构建AI时代数据基础设施中的作用,包括其强大的计算能力、调度能力和易用性特点。此外,还展示了MaxCompute在多模态数据处理中的应用实践以及具体客户案例,最后提供了体验MaxFrame解决方案的方式。
820 2
|
5月前
|
人工智能 分布式计算 大数据
探索 ODPS:大数据时代的得力助手
在大数据蓬勃发展、 AI 技术席卷各行业的当下,阿里云 ODPS 作为大数据平台体系,凭借其强大的功能和广泛的应用,为众多从业者和企业带来了深远的影响。我有幸深入使用 ODPS,从中收获颇丰。
148 0
|
SQL 存储 分布式计算
ODPS技术架构深度剖析与实战指南——从零开始掌握阿里巴巴大数据处理平台的核心要义与应用技巧
【10月更文挑战第9天】ODPS是阿里巴巴推出的大数据处理平台,支持海量数据的存储与计算,适用于数据仓库、数据挖掘等场景。其核心组件涵盖数据存储、计算引擎、任务调度、资源管理和用户界面,确保数据处理的稳定、安全与高效。通过创建项目、上传数据、编写SQL或MapReduce程序,用户可轻松完成复杂的数据处理任务。示例展示了如何使用ODPS SQL查询每个用户的最早登录时间。
1699 1