最新版本 Stable Diffusion 开源 AI 绘画工具之使用篇

简介: 学好使用方式让你的绘画技术突飞猛进

🎈 界面参数

  • 在使用 Stable Diffusion 开源 AI 绘画之前,需要了解一下绘画的界面和一些参数的意义
  • 目前 AI 绘画对中文提示词的效果不好,尽量使用英文提示词
  • 最主要一些参数如下:
  • Prompt:正向提示词,也就是 tag,提示词越多,AI 绘图结果会更加精准
  • Negative prompt:反向提示词,也就是反向 tag
  • Width / Height:要生成的图片尺寸。尺寸越大,越耗性能,耗时越久。
  • CFG scale:AI 对描述参数 Prompt 的倾向程度。值越小生成的图片越偏离你的描述,但越符合逻辑;值越大则生成的图片越符合你的描述,但可能不符合逻辑。
  • Sampling method:采样方法。有很多种,但只是采样算法上有差别,没有好坏之分,选用适合的即可。
  • Sampling steps:采样步长。太小的话采样的随机性会很高,太大的话采样的效率会很低,拒绝概率高
  • Seed:随机数种子。生成每张图片时的随机种子,这个种子是用来作为确定扩散初始状态的基础。不懂的话,用随机的即可。

1.png


🎈 采样器

  • Euler a:是个插画,tag 利用率仅次于 DPM2DPM2 a,环境光效菜,构图有时奇葩
  • Euler:柔和,也适合插画,环境细节与渲染好,背景模糊较深
  • Heun:单次出土平均质量比 EulerEuler a 高,但速度最慢,高 step 表现好
  • DDIM:适合宽画,速度偏低,高 step 表现较好,负面 tag 不够时发挥随意,环境光线与水汽效果好,写实不佳
  • DPM2:该采样方式对 tag 的利用率最高,几乎占用 80% 以上
  • DPM2 a:几乎与 DPM2 相同,只是在人物的时候可能有特写
  • PLMS:单次出图质量仅次于 Heun
  • LMS:质感 OA,饱和度与对比度偏低,更倾向于动画风格
  • LMS Karras:会大改成优化的风格,写实不佳
  • DPM fast:此为上界开发者所遗留的测试工具,不适合魔术师使用

2.png


🎈 文生图(txt2img)

  • 文生图(text2img):根据提示词 Prompt 的描述生成相应的图片
  • 选择 绘画模型(Stable Diffusion checkpoint)文生图(txt2img)填写正向提示词(Prompt)填写反向提示词(Negative prompt)选择采样器(一般选择DPM++ 2M Karras)设置采样步骤(一般设置30)设置长宽(Width / Height,推荐 1024 * 1536)点击生成(Generate)
  • 根据上面的步骤,即可通过文字生成图片了,一般我们只要编写 Prompt 即可, Negative prompt 一般都是固定的,限制一下水印,低质量以及其他可能出现的逻辑错误即可

3.png


🎈 图生图(img2img)

  • 图生图(img2img):将一张图片根据提示词 Prompt 描述的特点生成另一张新的图片
  • 选择 绘画模型(Stable Diffusion checkpoint)图生图(img2img)填写正向提示词(Prompt)填写反向提示词(Negative prompt)选择采样器(一般选择DPM++ 2M Karras)设置采样步骤(一般设置30)设置长宽(Width / Height,推荐 1024 * 1536)点击生成(Generate)
  • 将上传一张图片到图生图中,进行测试一下,这里使用的是刚刚文生图的照片,根据上面的步骤,点击生成,看看效果
  • 可以看出:AI 图生图,其实就是根据你上传的图片和你的 Prompt 生成一张跟上传差不多的照片

4.png


🎈 模型下载

  • 模型网站推荐:https://civitai.com/
  • 左上角的下拉框可以用来选择模型,其中 v1-5-pruned-emaonly.safetensors 是默认模型
  • 默认的模型画出来的图片比较丑,所以我们需要下载更好更适合的模型来绘画
  • 每个模型侧重绘画的风格不一样,有些适合画人,有些适合画动漫,有些适合画风景,根据自己的需求选择适合自己的绘画风格模型进行下载
  • 下载好模型,将模型文件放入到 models/Stable-diffusion 文件夹下,重载 UI,即可看到

5.png

相关文章
|
13天前
|
机器学习/深度学习 人工智能 算法
整合海量公共数据,谷歌开源AI统计学专家DataGemma
【10月更文挑战第28天】谷歌近期开源了DataGemma,一款AI统计学专家工具,旨在帮助用户轻松整合和利用海量公共数据。DataGemma不仅提供便捷的数据访问和处理功能,还具备强大的数据分析能力,支持描述性统计、回归分析和聚类分析等。其开源性质和广泛的数据来源使其成为AI研究和应用的重要工具,有助于加速研究进展和推动数据共享。
42 6
|
1月前
|
人工智能 Serverless
AI助理精准匹配------助力快速搭建Stable Difussion图像生成应用
【10月更文挑战第7天】过去在阿里云社区搭建Stable Diffusion图像生成应用需查阅在线实验室或官方文档,耗时且不便。现阿里云AI助理提供精准匹配服务,直接在首页询问AI助理即可获取详细部署步骤,简化了操作流程,提高了效率。用户可按AI助理提供的步骤快速完成应用创建、参数设置、应用部署及资源释放等操作,轻松体验Stable Diffusion图像生成功能。
|
1月前
|
存储 人工智能 uml
介绍一款好用的开源画图神器-draw.io | AI应用开发
draw.io 是一款基于浏览器的开源绘图工具,无需安装即可使用,支持多种操作系统和设备。其简洁的界面、丰富的形状库、智能对齐功能和强大的云端协作能力,使其成为专业人士和创意爱好者的首选。无论是产品设计、流程图绘制还是思维导图构建,draw.io 都能满足你的多样化需求。【10月更文挑战第7天】
103 0
|
13天前
|
存储 人工智能 SEO
全开源免费AI网址导航网站源码
Aigotools 可以帮助用户快速创建和管理导航站点,内置站点管理和自动收录功能,同时提供国际化、SEO、多种图片存储方案。让用户可以快速部署上线自己的导航站。
31 1
|
30天前
|
人工智能 Java API
阿里云开源 AI 应用开发框架:Spring AI Alibaba
近期,阿里云重磅发布了首款面向 Java 开发者的开源 AI 应用开发框架:Spring AI Alibaba(项目 Github 仓库地址:alibaba/spring-ai-alibaba),Spring AI Alibaba 项目基于 Spring AI 构建,是阿里云通义系列模型及服务在 Java AI 应用开发领域的最佳实践,提供高层次的 AI API 抽象与云原生基础设施集成方案,帮助开发者快速构建 AI 应用。本文将详细介绍 Spring AI Alibaba 的核心特性,并通过「智能机票助手」的示例直观的展示 Spring AI Alibaba 开发 AI 应用的便利性。示例源
|
29天前
|
人工智能
添加一个Stable Difussion图像生成应用,通过向AI助手简单的提问,即可快速搭建Stable Diffusion应用至自己的网站中,大幅提升开发效率。
添加一个Stable Difussion图像生成应用,通过向AI助手简单的提问,即可快速搭建Stable Diffusion应用至自己的网站中,大幅提升开发效率。
|
1月前
|
机器学习/深度学习 人工智能 TensorFlow
解锁AI潜力:让开源模型在私有环境绽放——手把手教你搭建专属智能服务,保障数据安全与性能优化的秘密攻略
【10月更文挑战第8天】本文介绍了如何将开源的机器学习模型(如TensorFlow下的MobileNet)进行私有化部署,包括环境准备、模型获取与转换、启动TensorFlow Serving服务及验证部署效果等步骤,适用于希望保护用户数据并优化服务性能的企业。
50 4
|
6月前
|
机器学习/深度学习 自然语言处理
文生图模型-Stable Diffusion | AIGC
所谓的生成式模型就是通过文本或者随机采样的方式来得到一张图或者一段话的模型,比如文生图,顾名思义通过文本描述来生成图像的过程。当前流行的文生图模型,如DALE-2, midjourney以及今天要介绍的Stable Diffusion,这3种都是基于Diffusion扩散模型【1月更文挑战第6天】
834 0
|
6月前
|
人工智能 开发工具 git
【AI绘画】Stable Diffusion 客户端搭建
【AI绘画】Stable Diffusion 客户端搭建
183 0
【AI绘画】Stable Diffusion 客户端搭建
|
人工智能 物联网
AI 绘画Stable Diffusion 研究(十七)SD lora 详解(上)
AI 绘画Stable Diffusion 研究(十七)SD lora 详解(上)
1418 0