《计算机视觉:模型、学习和推理》——2.5 贝叶斯公式

简介:

本节书摘来自华章计算机《计算机视觉:模型、学习和推理》一书中的第2章,第2.5节,作者:(英)普林斯(Prince,J. D.)著, 更多章节内容可以访问云栖社区“华章计算机”公众号查看。

2.5 贝叶斯公式

在式(2-5)和式(2-6)中,分别用两种方式表示联合概率。结合这些公式,可以得到Pr(xy)和Pr(yx)之间的关系:
image
其中,第二行、第三行分别利用边缘概率和条件概率的定义对分母进行了展开。这三个式子通常统称为贝叶斯公式。
贝叶斯公式中每项都有一个名称。等号左边的Pr(yx)叫做后验概率,代表给定x下y的概率。相反,Pr(y)叫做先验概率,表示在考虑x之前y的概率。Pr(xy)叫做似然性,分母Pr(x)是证据。
在计算机视觉中,常常用条件概率Pr(xy)来表示变量x与y的关系。然而,我们主要感兴趣的可能是变量y,在这种情况下,概率Pr(yx)就用贝叶斯公式来计算。

相关文章
|
7月前
|
机器学习/深度学习 存储 数据库
Python3 OpenCV4 计算机视觉学习手册:6~11(5)
Python3 OpenCV4 计算机视觉学习手册:6~11(5)
93 0
|
7月前
|
机器学习/深度学习 算法 数据可视化
计算机视觉+深度学习+机器学习+opencv+目标检测跟踪+一站式学习(代码+视频+PPT)-2
计算机视觉+深度学习+机器学习+opencv+目标检测跟踪+一站式学习(代码+视频+PPT)
|
3月前
|
人工智能 测试技术 API
AI计算机视觉笔记二十 九:yolov10竹签模型,自动数竹签
本文介绍了如何在AutoDL平台上搭建YOLOv10环境并进行竹签检测与计数。首先从官网下载YOLOv10源码并创建虚拟环境,安装依赖库。接着通过官方模型测试环境是否正常工作。然后下载自定义数据集并配置`mycoco128.yaml`文件,使用`yolo detect train`命令或Python代码进行训练。最后,通过命令行或API调用测试训练结果,并展示竹签计数功能。如需转载,请注明原文出处。
|
2月前
|
机器学习/深度学习 人工智能 TensorFlow
浅谈计算机视觉新手的学习路径
浅谈计算机视觉新手的学习路径
25 0
|
3月前
|
人工智能 测试技术 PyTorch
AI计算机视觉笔记二十四:YOLOP 训练+测试+模型评估
本文介绍了通过正点原子的ATK-3568了解并实现YOLOP(You Only Look Once for Panoptic Driving Perception)的过程,包括训练、测试、转换为ONNX格式及在ONNX Runtime上的部署。YOLOP由华中科技大学团队于2021年发布,可在Jetson TX2上达到23FPS,实现了目标检测、可行驶区域分割和车道线检测的多任务学习。文章详细记录了环境搭建、训练数据准备、模型转换和测试等步骤,并解决了ONNX转换过程中的问题。
|
7月前
|
机器学习/深度学习 Ubuntu Linux
计算机视觉+深度学习+机器学习+opencv+目标检测跟踪+一站式学习(代码+视频+PPT)-1
计算机视觉+深度学习+机器学习+opencv+目标检测跟踪+一站式学习(代码+视频+PPT)
|
5月前
|
自然语言处理 监控 自动驾驶
大模型在自然语言处理(NLP)、计算机视觉(CV)和多模态模型等领域应用最广
【7月更文挑战第26天】大模型在自然语言处理(NLP)、计算机视觉(CV)和多模态模型等领域应用最广
277 11
|
6月前
|
编解码 机器人 测试技术
2024年6月计算机视觉论文推荐:扩散模型、视觉语言模型、视频生成等
6月还有一周就要结束了,我们今天来总结2024年6月上半月发表的最重要的论文,重点介绍了计算机视觉领域的最新研究和进展。
160 8
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
计算机视觉借助深度学习实现了革命性进步,从图像分类到复杂场景理解,深度学习模型如CNN、RNN重塑了领域边界。
【7月更文挑战第2天】计算机视觉借助深度学习实现了革命性进步,从图像分类到复杂场景理解,深度学习模型如CNN、RNN重塑了领域边界。AlexNet开启新时代,后续模型不断优化,推动对象检测、语义分割、图像生成等领域发展。尽管面临数据隐私、模型解释性等挑战,深度学习已广泛应用于安防、医疗、零售和农业,预示着更智能、高效的未来,同时也强调了技术创新、伦理考量的重要性。
72 1
|
7月前
|
编解码 边缘计算 自然语言处理
2024年5月计算机视觉论文推荐:包括扩散模型、视觉语言模型、图像编辑和生成、视频处理和生成以及图像识别等各个主题
五月发布的计算机视觉领域重要论文涵盖了扩散模型、视觉语言模型、图像生成与编辑及目标检测。亮点包括:1) Dual3D提出双模式推理策略,实现高效文本到3D图像生成;2) CAT3D利用多视图扩散模型创建3D场景,仅需少量图像;3) Hunyuan-DiT是多分辨率的中文理解扩散Transformer,可用于多模态对话和图像生成;4) 通过潜在扩散模型从EEG数据重建自然主义音乐,展示复杂音频重建潜力。此外,还有关于视觉语言模型和图像编辑的创新工作,如BlobGEN用于合成具有控制性的图像。
289 3

热门文章

最新文章