解决 RuntimeError: Tensor for 'out' is on CPU, Tensor for argument #1 'self' is on CPU, but expected them to be on GPU (while checking arguments for addmm)

简介: 程序报错:RuntimeError: Tensor for 'out' is on CPU, Tensor for argument #1 'self' is on CPU, but expected them to be on GPU (while checking arguments for addmm)这个错误提示表明你使用了一个在CPU上的张量与一个在GPU上的张量进行了操作,导致了数据类型不匹配的错误。一种解决方法是将所有的张量都放到同一个设备上进行计算,可以使用 to() 方法来实现:

程序报错:RuntimeError: Tensor for 'out' is on CPU, Tensor for argument #1 'self' is on CPU, but expected them to be on GPU (while checking arguments for addmm)


这个错误提示表明你使用了一个在CPU上的张量与一个在GPU上的张量进行了操作,导致了数据类型不匹配的错误。一种解决方法是将所有的张量都放到同一个设备上进行计算,可以使用 to() 方法来实现:


import torch
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
x = torch.randn(10, 5).to(device)
y = torch.randn(5, 2).to(device)
# 将模型移动到GPU
model = model.to(device)
# 将输入数据移动到GPU
output = model(x.to(device))
# 将标签数据移回CPU
loss = criterion(output, y.to(device)).to('cpu')


在这个例子中,我们首先检查设备是否有可用的GPU设备,并将输入数据转移到设备上。接下来,我们将模型也移动到设备上,以确保模型和数据在同一个设备上进行计算。最后,在计算损失时,我们将标签数据移回CPU上,以便将其与模型输出进行比较。


需要注意的是,当模型和参数位于GPU上时,在进行计算时也要确保输入数据和标签数据也在同一个设备上。如果数据和模型不在同一个设备上,会导致类似的类型不匹配的错误。

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
7天前
|
弹性计算 人工智能 Serverless
阿里云ACK One:注册集群云上节点池(CPU/GPU)自动弹性伸缩,助力企业业务高效扩展
在当今数字化时代,企业业务的快速增长对IT基础设施提出了更高要求。然而,传统IDC数据中心却在业务存在扩容慢、缩容难等问题。为此,阿里云推出ACK One注册集群架构,通过云上节点池(CPU/GPU)自动弹性伸缩等特性,为企业带来全新突破。
|
28天前
|
监控 异构计算
Jetson 学习笔记(八):htop查看CPU占用情况和jtop监控CPU和GPU
在NVIDIA Jetson平台上使用htop和jtop工具来监控CPU、GPU和内存的使用情况,并提供了安装和使用这些工具的具体命令。
91 0
|
14天前
|
机器学习/深度学习 人工智能 并行计算
CPU和GPU的区别
【10月更文挑战第14天】
|
14天前
|
机器学习/深度学习 人工智能 缓存
GPU加速和CPU有什么不同
【10月更文挑战第20天】GPU加速和CPU有什么不同
29 1
|
20天前
|
人工智能 安全 芯片
【通义】AI视界|谷歌 Tensor G5 芯片揭秘:1+5+2 八核 CPU,支持光线追踪
本文由【通义】自动生成,涵盖黄仁勋宣布台积电协助修复Blackwell AI芯片设计缺陷、苹果分阶段推出Apple Intelligence、OpenAI保守派老将辞职、英伟达深化与印度合作推出印地语AI模型,以及谷歌Tensor G5芯片支持光线追踪等最新科技资讯。点击链接或扫描二维码,获取更多精彩内容。
|
2月前
|
人工智能 自然语言处理 文字识别
MinerU-大语言语料处理神器,CPU/GPU均可跑,开源免费“敲”好用
在7月4日举行的WAIC 2024科学前沿主论坛上,书生·浦语2.5正式发布,面向大模型研发与应用的全链条工具体系同时迎来升级。
MinerU-大语言语料处理神器,CPU/GPU均可跑,开源免费“敲”好用
|
3月前
|
机器学习/深度学习 人工智能 并行计算
【人工智能】CPU、GPU与TPU:人工智能领域的核心处理器概述
在人工智能和计算技术的快速发展中,CPU(中央处理器)、GPU(图形处理器)和TPU(张量处理器)作为核心处理器,各自扮演着不可或缺的角色。它们不仅在性能上各有千秋,还在不同的应用场景中发挥着重要作用
191 2
|
4月前
|
并行计算 API 数据处理
GPU(图形处理单元)因其强大的并行计算能力而备受关注。与传统的CPU相比,GPU在处理大规模数据密集型任务时具有显著的优势。
GPU(图形处理单元)因其强大的并行计算能力而备受关注。与传统的CPU相比,GPU在处理大规模数据密集型任务时具有显著的优势。
|
4月前
|
机器学习/深度学习 人工智能 并行计算
GPU 和 CPU 处理器的架构
CPU(中央处理器)和 GPU(图形处理单元)是计算机系统中最重要的两种处理器。它们各自的架构设计和技术体系决定了其在不同应用领域中的性能和效率。
136 1
|
4月前
|
机器学习/深度学习 TensorFlow API
Keras是一个高层神经网络API,由Python编写,并能够在TensorFlow、Theano或CNTK之上运行。Keras的设计初衷是支持快速实验,能够用最少的代码实现想法,并且能够方便地在CPU和GPU上运行。
Keras是一个高层神经网络API,由Python编写,并能够在TensorFlow、Theano或CNTK之上运行。Keras的设计初衷是支持快速实验,能够用最少的代码实现想法,并且能够方便地在CPU和GPU上运行。