PyTorch深度学习实战 | 迁移学习与自然语言处理实践

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_基础版,每接口每天50万次
简介: 实践是检验理论的唯一标准。为此,我们将通过中国计算机学会举办的2019 CCF大数据与计算智能大赛的互联网金融新实体发现竞赛作为实践,让大家了解预训练模型的强大。

640.jpg

01、赛题任务

从提供的金融文本中识别出现的未知金融实体,包括金融平台名、企业名、项目名称及产品名称。持有金融牌照的银行、证券、保险、基金等机构、知名的互联网企业如腾讯、淘宝、京东等和训练集中出现的实体认为是已知实体。

02、赛题分析

1、任务本质

使用BERT实体识别微调方法完成任务。

2、数据分析

针对赛题数据集,我们进行了较为详细的统计和分析。数据集中的文本长度分布如图1所示,文本长度0~500的数据有3615条,超过500的则有6390条。大部分数据文本长度较长。其中文本最短长度为4,最大长度为32787,平均长度为1311。在训练集中还存在200多条数据有标签谬误。数据集中出现了部分噪声,包括一些HTML文字和特殊字符。可以看出,数据集存在文本过长,噪声过多等问题。

640.jpg


▍图1 文本长度统计

实验流程如图2所示。

640.jpg


▍图2 实验流程图

03、实验代码

因为整个项目代码比较长,我们将按照顺序给出每一个部分的核心代码。

1、模型构建

我们尝试使用了多种开源的预训练模型(BERT,ERNIE, BERT_WWM, ROBERTA[4]),并分别下接了IDCN-CRF与BILST-CRF两种结构来构建实体抽取模型。本节介绍的单模以预训练模型BERT作为基准模型来举例。

a●BERT-BILSTM-CRF

BILSTM-CRF是目前较为流行的命名实体识别模型。将BERT预训练模型学习到的token向量输入BILSTM模型进行进一步学习,让模型更好的理解文本的上下关系,最终通过CRF层获得每个token的分类结果。BERT-BILSTM-CRF模型图如图3所示。

640.jpg


▍图3 BERT-BILSTM-CRF结构图

b●BERT-IDCNN-CRF

EmmaStrubell等人首次将IDCNN用于实体识别。IDCNN通过利用空洞(即补0)来改进CNN结构,在丢失局部信息的情况下,捕获长序列文本的长距离信息,适合当前长文本的数据集。该方法比传统的CNN具有更好的上下文和结构化预测能力。而且与LSTM不同的是,IDCNN即使在并行的情况下,对长度为N的句子的处理顺序也只需要O(n)的时间复杂度。BERT-IDCNN-CRF模型结构如图4所示。该模型的精度与BERT-BILSTM-CRF相当。模型的预测速度提升了将近50%。

640.jpg


▍图4 BERT-IDCNN-CRF结构图

c●BERT多层表示的动态权重融合

Ganesh Jawahar等人通过实验验证了BERT每一层对文本的理解都有所不同。为此,我们对BERT进行了改写,将BERT的12层transformer生成的表示赋予一个权重,权重的初始化如式(1)所示,而后通过训练来确定权重值,并将每一层生成的表示加权平均,再通过一层全连接层降维至512维如式(2)所示,最后结合之前的IDCNN-CRF和BILSTM-CRF模型来获得多种异构单模。BERT多层表示的动态权重融合结构如图5所示。其中为BERT每一层输出的表示,为权重BERT每一层表示的权重值。

640.jpg


(1)


640.jpg


(2)


640.jpg


▍图 5 BERT动态权重融合

对使用动态融合的RoBERTa-BILSTM-CRF和未使用动态融合的相同模型结果进行了对比,结果如表1所示。通过表中的结果,可以看到加入了动态融合的方法使单模成绩提高了1.4%。值得一提的是,我们通过BERT动态权重融合的方法,得到了该赛题得分最高的单模。

表1 两种异构单模结果对比表

image.png

d●模型构建

代码在model.py,我们可以通过config.py来控制是否对BERT进行动态权重融合,也可以控制使用哪种模型结构,代码如下:

//获取到StreamController的stream,即出口可以取数据
  1.  # /chapter8/CCF_ner/model.py
2.  def __init__(self, config):
3.  self.config = config
4.      # 喂入模型的数据占位符
5.  self.input_x_word = tf.placeholder(tf.int32, [None, None], name="input_x_word")
6.  self.input_x_len = tf.placeholder(tf.int32, name='input_x_len')
7.  self.input_mask = tf.placeholder(tf.int32, [None, None], name='input_mask')
8.  self.input_relation = tf.placeholder(tf.int32, [None, None], name='input_relation') # 实体NER的真实标签
9.  self.keep_prob = tf.placeholder(tf.float32, name='dropout_keep_prob')
10.   self.is_training = tf.placeholder(tf.bool, None, name='is_training')
11.  
12.  # BERT Embedding
13.  self.init_embedding(bert_init=True)
14.  output_layer = self.word_embedding
15.  
16.  # 超参数设置
17.  self.relation_num = self.config.relation_num
18.  self.initializer = initializers.xavier_initializer()
19.  self.lstm_dim = self.config.lstm_dim
20.  self.embed_dense_dim = self.config.embed_dense_dim
21.  self.dropout = self.config.dropout
22.  self.model_type = self.config.model_type
23.  print('Run Model Type:', self.model_type)
24.  
25.  # idcnn的超参数
26.  self.layers = [
27.     {'dilation': 1},
28.     {'dilation': 1},
29.     {'dilation': 2},]
30.  self.filter_width = 3  
31.  self.num_filter = self.lstm_dim
32.  self.embedding_dim = self.embed_dense_dim
33.  self.repeat_times = 4  
34.  self.cnn_output_width = 0  
35.  
36.  # CRF超参数
37.  used = tf.sign(tf.abs(self.input_x_word))
38.  length = tf.reduce_sum(used, reduction_indices=1)
39.  self.lengths = tf.cast(length, tf.int32)
40.  self.batch_size = tf.shape(self.input_x_word)[0]
41.  self.num_steps = tf.shape(self.input_x_word)[-1]
42.  if self.model_type == 'bilstm':
43.  lstm_inputs = tf.nn.dropout(output_layer, self.dropout)
44.  lstm_outputs = self.biLSTM_layer(lstm_inputs, self.lstm_dim, self.lengths)
45.  self.logits = self.project_layer(lstm_outputs)
46.  
47.  elifself.model_type == 'idcnn':
48.  model_inputs = tf.nn.dropout(output_layer, self.dropout)
49.  model_outputs = self.IDCNN_layer(model_inputs)
50.  self.logits = self.project_layer_idcnn(model_outputs)
51.  
52.  else:
53.  raise KeyError
54.  
55.  # 计算损失
56.  self.loss = self.loss_layer(self.logits, self.lengths)

2、代码框架介绍

我们此次介绍的代码框架复用性与解耦性比较高。我们在这里大致说明一下怎么去使用这个框架。对于一个问题,我们首先想的是解决问题的办法,也就是模型构建部分model.py。当模型确定了,就要构建数据迭代器(utils.py)给模型输入数据了,而utils.py读入的数据是preprocess.py清洗干净的数据。

当构建以上这几部分之后,便是模型训练部分train_fine_tune.py,这个部分包含训练、验证F1和保存每一个epoch训练模型的过程。一开始训练单模得先确定单模是否有效,我们可以通过train_fine_tune.py的main函数将训练集和验证集都用验证集去表示,看一下验证集F1是否接近90%,若接近则说明模型构建部分没有出错,但不保证F1评估公式是否写错。因此,使用刚刚用验证集训练得到的模型,通过predict.py来预测验证集,人工检验预测的结果是否有效,这样子就能保证我们整体的单模流程完全没问题了。
最后就是后处理规则postprocess和融合ensemble两部分,这里的主观性比较强,一般都是根据具体问题具体分析来操作。
其中,utils.py也有main函数,可以用来检验构造的Batch数据是否有误,直接打印出来人工检验一下即可。整个框架的超参数都在config.py处设置,加强框架的解耦性,避免了一处修改,处处修改的情况。
整体的框架也可复用到其他问题上,只需要根据修改的model.py来确定输入的Batch数据格式,其他的代码文件也只是根据问题去修改相应部分,降低了调试成本。

04、源代码

https://www.jianguoyun.com/p/DQR-jOMQ9of0ChjGxv4EIAA

目录
相关文章
|
4天前
|
机器学习/深度学习 人工智能 TensorFlow
探索深度学习的奥秘:从理论到实践
【8月更文挑战第55天】本文将深入浅出地介绍深度学习的基本原理,并通过一个简单的代码示例,让读者快速掌握深度学习的基本概念和应用。我们将从神经网络的构建、训练和优化等方面展开讨论,帮助读者更好地理解深度学习的内涵和意义。
|
3天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习的奥秘:从理论到实践
【9月更文挑战第24天】本文将深入探讨深度学习的理论基础,揭示其背后的数学原理和算法逻辑。我们将从感知机模型出发,逐步引入神经网络、反向传播算法等核心概念,并通过代码示例展示如何在Python环境中实现一个简单的深度学习模型。无论你是初学者还是有一定基础的开发者,都能从中获益。
|
1天前
|
机器学习/深度学习 监控 TensorFlow
深度学习中的图像识别技术:从理论到实践
【9月更文挑战第26天】在本文中,我们将深入探讨深度学习在图像识别领域的应用。首先,我们将介绍深度学习的基本原理和关键技术,然后通过一个实际的案例——手写数字识别,展示如何利用Python和TensorFlow实现深度学习模型。最后,我们将讨论深度学习在图像识别领域的挑战和未来发展方向。
|
8天前
|
机器学习/深度学习 人工智能 自然语言处理
深入浅出深度学习:从基础到实战
【9月更文挑战第19天】本文将带你走进深度学习的世界,从基础概念入手,逐步深入到实战应用。我们将通过简单易懂的语言和生动的比喻,让你轻松理解深度学习的原理和应用场景。同时,我们还为你准备了一些实用的代码示例,帮助你快速入门深度学习,开启你的AI之旅。
30 10
|
4天前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习:从理论到实践
【9月更文挑战第23天】深度学习,一个在科技界引起革命性变革的领域,已经渗透进我们生活的方方面面。本文将深入浅出地探讨深度学习的基本概念、关键技术以及应用实例,旨在为初学者提供一个全面而直观的理解框架。通过简化的语言和生动的比喻,我们将一起揭开深度学习神秘的面纱,并借助代码示例加深理解。无论你是科技爱好者还是AI领域的初学者,这篇文章都将是你理想的启航点。
|
5天前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习入门:从理论到实践
【9月更文挑战第22天】本文将带你走进深度学习的世界,从基础的理论概念出发,逐步深入到实践应用。我们将探讨神经网络的工作原理,以及如何通过编程实现一个简单的深度学习模型。无论你是初学者还是有一定基础的学习者,都能在这篇文章中找到有价值的信息。让我们一起揭开深度学习的神秘面纱,探索这个充满无限可能的领域吧!
|
4天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习:从理论到实践
【9月更文挑战第23天】深度学习,作为人工智能领域的一颗璀璨明珠,已经引领了无数科技的突破与创新。本文将深入浅出地介绍深度学习的核心概念、基础理论以及实战应用,帮助读者构建起对这一前沿技术的整体认识。我们将一起探索神经网络的奥秘,了解如何训练高效的模型,并且通过代码示例具体展示深度学习的强大能力。无论你是科技爱好者,还是志在从事AI研究的学者,这篇文章都将成为你深度学习之旅的启航点。
21 4
|
4天前
|
机器学习/深度学习 算法 自动驾驶
深度学习之分布式智能体学习
基于深度学习的分布式智能体学习是一种针对多智能体系统的机器学习方法,旨在通过多个智能体协作、分布式决策和学习来解决复杂任务。这种方法特别适用于具有大规模数据、分散计算资源、或需要智能体彼此交互的应用场景。
23 4
|
8天前
|
机器学习/深度学习 人工智能 算法
深度学习中的卷积神经网络(CNN)入门与实践
【9月更文挑战第19天】在这篇文章中,我们将探索深度学习的一个重要分支——卷积神经网络(CNN)。从基础概念出发,逐步深入到CNN的工作原理和实际应用。文章旨在为初学者提供一个清晰的学习路径,并分享一些实用的编程技巧,帮助读者快速上手实践CNN项目。
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI的未来:深度学习与自然语言处理的融合
【9月更文挑战第22天】本文旨在探讨AI技术中深度学习与自然语言处理的结合,以及它们如何共同推动未来技术的发展。我们将通过实例和代码示例,深入理解这两种技术如何相互作用,以及它们如何影响我们的生活和工作。
24 4