torch中对一个行向量使用sigmoid函数转换成概率,如果这个行向量包含的元素有几千上万个,这可能会导致转换成的概率再抽样效果不好,应该怎么解决这个问题

简介: 可以尝试使用softmax函数进行转换,它可以处理具有多个值的行向量,并将其转换为概率分布。另外,可以考虑使用截断技术(如Top-K),减少概率中过小的部分,以提高采样效果。

可以尝试使用softmax函数进行转换,它可以处理具有多个值的行向量,并将其转换为概率分布。另外,可以考虑使用截断技术(如Top-K),减少概率中过小的部分,以提高采样效果。

相关文章
|
7月前
一个16位的数以4位为一组分割,然后将各部分相加获取最终结果。
一个16位的数以4位为一组分割,然后将各部分相加获取最终结果。
|
存储 算法 PyTorch
pytorch 给定概率分布的张量,如何利用这个概率进行重复\不重复采样?
在 PyTorch 中,可以使用 torch.distributions.Categorical 来基于给定的概率分布进行采样。
963 0
|
机器学习/深度学习 PyTorch 算法框架/工具
base model初始化large model,造成的参数矩阵对不上权重不匹配问题+修改预训练权重形状和上采样
base model初始化large model,造成的参数矩阵对不上权重不匹配问题+修改预训练权重形状和上采样
226 0
|
资源调度 算法 关系型数据库
概率图推断之变量消除算法
事实证明,推理是一项颇具挑战的任务。对于很多我们感兴趣的概率,要准确回答这些问题都是NP难题。至关重要的是,推理是否容易处理取决于描述概率的图的结构。尽管有些问题很难解决,我们仍然可以通过近似推理方法获得有用的答案。
266 0
概率图推断之变量消除算法
|
资源调度 PyTorch 算法框架/工具
pytorch 如何生成指定位置、尺度参数的随机高斯矩阵,并指定这个随机矩阵的形式
在上述代码中,我们使用 torch.normal(mean=mu, std=sigma, size=(m, n)) 函数直接生成了一个形状为 (m, n) 的随机高斯矩阵 data,其中 mean 参数指定了均值,std 参数指定了标准差。 需要注意的是,与 torch.randn() 不同,torch.normal() 生成的是具有指定均值和标准差的高斯分布,因此生成的随机矩阵不一定是标准正态分布。如果需要生成标准正态分布随机矩阵,可以将 mean 参数设置为 0,std 参数设置为 1。
1202 1
|
机器学习/深度学习
将迭代次数问题几何化的一个计算例子
神经网络调参,设置迭代次数
122 0
将迭代次数问题几何化的一个计算例子
|
索引 Python
随机生成四则运算题并判断正确率
随机生成四则运算题并判断正确率
163 0
随机生成四则运算题并判断正确率
|
PyTorch 算法框架/工具
torch 如何实现两点分布采样,要求采100个样本,其中20个样本为数字1,80个为数字2
可以使用 PyTorch 中的 torch.distributions 模块实现两点分布采样。具体来说,可以使用 Categorical 分布将数字1和数字2的概率分别设为0.2和0.8,然后调用 sample() 方法进行采样。可以先使用 torch.ones() 和 torch.zeros() 函数生成分别包含20个数字1和80个数字2的张量,然后使用 torch.cat() 函数将它们拼接在一起,再使用 torch.randperm() 函数对其进行打乱。
352 0
|
PyTorch 算法框架/工具
输入一个一行张量,如何转换成概率?
将一行张量转换为概率分布的常见方法是使用 softmax 函数。softmax 函数的作用是将一个向量映射到一个新的向量,其中每个元素都在 0 到 1 之间,并且所有元素的和等于 1。因此,可以将 softmax 函数应用于一行张量,以将其转换为概率分布。
218 0
|
PyTorch 算法框架/工具
已经定义好了一个张量,如何增加代码要求计算梯度?
在 PyTorch 中,可以使用 requires_grad_() 方法来动态设置张量的 requires_grad 属性为 True,从而要求计算梯度。具体来说,对于已经创建的张量 x,可以通过调用 x.requires_grad_() 来将其设置为需要计算梯度的张量。
363 0