pytorch 张量,去掉最后一个维度

简介: 可以使用 PyTorch 中的 .squeeze() 函数来去掉张量中大小为 1 的维度。如果要删除最后一个维度,可以指定参数 dim=-1,即对最后一个维度进行处理。下面是示例代码:

可以使用 PyTorch 中的 .squeeze() 函数来去掉张量中大小为 1 的维度。如果要删除最后一个维度,可以指定参数 dim=-1,即对最后一个维度进行处理。下面是示例代码:

import torch
x = torch.randn(2, 3, 1)
y = x.squeeze(dim=-1)
print(x.size())  # 输出 torch.Size([2, 3, 1])
print(y.size())  # 输出 torch.Size([2, 3])

在上述代码中,我们首先创建了一个形状为 (2, 3, 1) 的张量 x,其中最后一个维度大小为 1。然后使用 .squeeze() 函数将其转换为形状为 (2, 3) 的张量 y,即已经去掉了最后一个维度。注意,在调用 .squeeze() 函数时,需要指定要去掉的维度,否则函数会默认去掉所有大小为 1 的维度。

相关文章
|
4月前
|
机器学习/深度学习 PyTorch 算法框架/工具
|
1月前
|
存储 并行计算 PyTorch
探索PyTorch:张量数值计算
探索PyTorch:张量数值计算
|
1月前
|
机器学习/深度学习 并行计算 PyTorch
探索PyTorch:张量的创建和数值计算
探索PyTorch:张量的创建和数值计算
|
1月前
|
机器学习/深度学习 PyTorch 算法框架/工具
探索PyTorch:张量的类型转换,拼接操作,索引操作,形状操作
探索PyTorch:张量的类型转换,拼接操作,索引操作,形状操作
|
25天前
|
PyTorch 算法框架/工具 Python
Pytorch学习笔记(十):Torch对张量的计算、Numpy对数组的计算、它们之间的转换
这篇文章是关于PyTorch张量和Numpy数组的计算方法及其相互转换的详细学习笔记。
30 0
|
3月前
|
机器学习/深度学习 人工智能 PyTorch
掌握 PyTorch 张量乘法:八个关键函数与应用场景对比解析
PyTorch提供了几种张量乘法的方法,每种方法都是不同的,并且有不同的应用。我们来详细介绍每个方法,并且详细解释这些函数有什么区别:
62 4
掌握 PyTorch 张量乘法:八个关键函数与应用场景对比解析
|
3月前
|
机器学习/深度学习 算法 PyTorch
【深度学习】TensorFlow面试题:什么是TensorFlow?你对张量了解多少?TensorFlow有什么优势?TensorFlow比PyTorch有什么不同?该如何选择?
关于TensorFlow面试题的总结,涵盖了TensorFlow的基本概念、张量的理解、TensorFlow的优势、数据加载方式、算法通用步骤、过拟合解决方法,以及TensorFlow与PyTorch的区别和选择建议。
236 2
|
3月前
|
存储 PyTorch API
Pytorch入门—Tensors张量的学习
Pytorch入门—Tensors张量的学习
26 0
|
5月前
|
算法 PyTorch 算法框架/工具
Pytorch - 张量转换拼接
使用 Tensor.numpy 函数可以将张量转换为 ndarray 数组,但是共享内存,可以使用 copy 函数避免共享。
|
5月前
|
存储 机器学习/深度学习 PyTorch
Pytorch-张量形状操作
PyTorch中,张量形状操作至关重要,如reshape用于改变维度而不变元素,transpose/permute用于维度交换,view改形状需内存连续,squeeze移除单维度,unsqueeze添加维度。这些函数帮助数据适应神经网络层间的转换。例如,reshape能调整数据适配层的输入,transpose用于矩阵转置或多维排列,而squeeze和unsqueeze则用于处理单维度。理解并熟练运用这些工具是深度学习中必要的技能。