软件测试|数据分析神器pandas教程(一)

简介: 软件测试|数据分析神器pandas教程(一)

在这里插入图片描述

前言

Python是非常适合用于数据分析的,除了Python代码简单以外,Python还有非常多的第三方库,对于数据分析有很大帮助,今天我们就介绍一下Python进行数据分析的神器——pandas。

安装

从2019年1月1号开始,新发布的pandas将只支持Python3版本,所以我们的教程也以python3.7为例进行演示。

安装pandas和安装其他第三方库类似,只需要一条简单的命令即可,命令如下:

pip install pandas

注:日常使用中,pandas通常和numpy结合使用,所以我们还需要同时安装好numpy模块。

验证安装是否成功,我们可以运行一个简单脚本验证是否安装成功,代码如下:

import pandas

print(pandas.__version__)

-------------------------------
输出结果如下:
1.3.5

简单示例

下面是我们的一个简单的示例,代码如下:

import pandas as pd

dataset = {
  'player': ["Bayern", "Muller", "Germany"],
  'game': ['德甲', '欧冠', '欧洲杯']
}

mydata = pd.DataFrame(dataset)

print(mydata)

-----------------------
输出结果如下:
    player game
0   Bayern   德甲
1   Muller   欧冠
2  Germany  欧洲杯

当然,我们可以在dataset中继续添加其他内容,读取的内容也会按照一样的顺序出现,代码如下:

import pandas as pd

dataset = {
  'team': ["Bayern", "Dortmond", "Germany"],
  'game': ['德甲', '欧冠', '德国杯'],
  'palyer': ['穆西亚拉', '格雷茨卡', '基米希'],
  'enemy': ['man city', 'chelsea', 'paris']
}

mydata = pd.DataFrame(dataset)

print(mydata)

----------------------
输出结果如下:
       team game palyer     enemy
0    Bayern   德甲   穆西亚拉  man city
1  Dortmond   欧冠   格雷茨卡   chelsea
2   Germany  德国杯    基米希     paris

注:日常工作中,我们通常在导入时将pandas导入为pd

总结

本文主要介绍了pandas的安装还有一个简单示例,我们需要注意新版本pandas不再支持Python2.x版本,后续我们将介绍pandas的数据结构。

相关文章
|
1月前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
71 0
|
19天前
|
数据可视化 数据挖掘
R中单细胞RNA-seq数据分析教程 (3)
R中单细胞RNA-seq数据分析教程 (3)
27 3
R中单细胞RNA-seq数据分析教程 (3)
|
1月前
|
SQL 数据挖掘 Python
R中单细胞RNA-seq数据分析教程 (1)
R中单细胞RNA-seq数据分析教程 (1)
37 5
R中单细胞RNA-seq数据分析教程 (1)
|
25天前
|
机器学习/深度学习 数据挖掘
R中单细胞RNA-seq数据分析教程 (2)
R中单细胞RNA-seq数据分析教程 (2)
43 0
R中单细胞RNA-seq数据分析教程 (2)
|
28天前
|
数据采集 数据可视化 数据挖掘
深入浅出:使用Python进行数据分析的基础教程
【10月更文挑战第41天】本文旨在为初学者提供一个关于如何使用Python语言进行数据分析的入门指南。我们将通过实际案例,了解数据处理的基本步骤,包括数据的导入、清洗、处理、分析和可视化。文章将用浅显易懂的语言,带领读者一步步掌握数据分析师的基本功,并在文末附上完整的代码示例供参考和实践。
|
1月前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
41 2
|
1月前
|
缓存 测试技术 Apache
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
52 1
|
2月前
|
自然语言处理 机器人 Python
ChatGPT使用学习:ChatPaper安装到测试详细教程(一文包会)
ChatPaper是一个基于文本生成技术的智能研究论文工具,能够根据用户输入进行智能回复和互动。它支持快速下载、阅读论文,并通过分析论文的关键信息帮助用户判断是否需要深入了解。用户可以通过命令行或网页界面操作,进行论文搜索、下载、总结等。
63 1
ChatGPT使用学习:ChatPaper安装到测试详细教程(一文包会)
|
1月前
|
SQL 数据采集 数据挖掘
Pandas 教程
10月更文挑战第25天
37 2
|
1月前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
41 2