基于farrow结构的时间同步算法matlab仿真

简介: 基于farrow结构的时间同步算法matlab仿真

1.算法描述

     采样速率转换(SRC)在通信中非常普遍。一般有两种方法:一种是通过D/A重构信号,再采样,从而实现采样速率的转换;另一种是利用数字滤波器直接进行采样转换。数字滤波器有CIC,多相,FARROW。

    在一个采样间隔T内,FARROW滤波器结构的系数不变,可变的是分数延迟,在一个采样间隔内,可任意改变分数延迟,提高采样率。一般拉格朗日内插采用直接的FIR滤波器实现,虽然简单,但系数随迟延变化而变化,一旦延迟D变化,需重新计算或保存滤波器系数,且滤波器系数与内插因子成比例,实现不灵活。因此提出一种更为灵活高效的实现结构,FARROW滤波器结构。FARROW滤波器结构不仅可应对变化的分数延迟而且大大减少运算,提高运行效率。理想的分数延迟滤波器是since滤波器,在时域里,它是一个无限长冲击响应滤波器,不可实现。

   目前的通用做法就是采用多项式插值滤波器去实现一些分数倍比较大的采样率转换。同时采用farrow结构实现更简便,即采用farrow类型滤波器来实现更为简便,farrow类型滤波器也称抽取滤波器。一般的数学模型为重采样模型为,采样信号x(mts)经过内插器h(t),输出信号:在时刻t=kti对信号进行重采样,输出信号:假设h(t)是特定的脉冲响应,这里的目的是计算t=kti时刻y(kti)的采样值,因此首先需要定义x(mts)的采样基准时刻mkts,这个时刻刚好在t=kti时刻之前,因此其中int[z]表示不大于z的最大整数,mk为插值基点,决定输入序列中参与运算的采样点,由插值时刻t=kti决定。因此插值时间t=kti可表示为mkts加上一个正小数部分的求和形式:代入得到最后的结果:其中参数uk为误差间隔,决定内插滤波器冲击响应系数,其范围为uk∈[0,1)。插值基点mk和误差间隔uk表示了ts和t之间的关系,如图2所示。而对于多项式插值滤波器来讲,得到通用的插值公式如下:其中lk(uk)的如果采用4阶拉格朗日插值得到的结果为:和得到转化后的结果:式中的a1、a2、a3、a4分别为:和a4=x(mk+1)。最终转换成farrow类型滤波器实现方式:y(n)=((a1uk+a2)uk+a3)uk)+a4。其中a1、a2、a3、a4可以分别写成滤波器组的形式。滤波器系数coeff分别为{-1/6、1/2、-1/2、1/6},{1/2、-1、1/2、0},{-1/3、-1/2、1、-1/6},{0、1、0、0}。其中插值基点mk和误差间隔uk的计算过程在前面已经有描述过。而在fpga实现的过程当中主要以定点类型的数据进行运算,需要将正常的浮点型数据量化成整形数据。在上述公式中,需要量化的系数主要是滤波器系数coeff和误差间隔uk。对于farrow类型滤波器来说,需要选择合适的量化位宽,保证对于频谱的幅频响应满足,同时也要防止滤波器不要溢出。

    farrow滤波器是一种连续可变时延的分数时延滤波器,这种滤波器的结构是由farrowcw于1988年提出,起初是用来解决声纳学中的分数时延问题。普通数字延时滤波器虽然结构简单,但系数计算过程复杂,在延时参数快速变化时,系数更新速度无法满足实时性要求,在工程应用上受限制。采用farrow结构数字延时滤波器能够更加灵活高效地进行分数延时滤波,延时参数改变时,无需重新计算滤波器系数,更容易在现场可编程门阵(fpga)上实现。信号处理的fpga实现过程中,往往需要大量消耗的乘法资源,从而导致fpga的乘法器资源成为系统瓶颈,本设计介绍了一种基于fpga的farrow滤波器设计方法,该方法采用对称结构的滤波器求解方法,充分利用乘法资源,高效实现farrow滤波器功能。

————————————————

 farrow滤波器的基本结构如下:

2319546d15b771e4e114c37ff956dad3_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

Farrow滤波器的原理:

51316dd91cab4150485342669050345d_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   其中,μm表示当前输出抽样点与其前面输入抽样点之间的距离,且有0≤μm<1。由(5)式即可得出一种实现SRC滤波的多项式滤波器,一般称为Farrow结构,该结构的联络图如图3所示。对于距离原来抽样位置为μm的任何输出抽样值,若用t=μm代入所在位置的分段多项式就可以计算出来,而不需要存储这些抽样值。 

2.仿真效果预览
matlab2022a仿真结果如下:

f1874cc77f920131bed7c521dec447bd_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.MATLAB核心程序

  x = zeros(1,L);
  x(1) = 1;
 
  % set the initial conditions
  x0 = zeros(1,size(P,1)-1);
  t0 = 0;
 
  if 1,
    [h t N t0 x0] = asrc_farrow(x,1/M,t0,x0,P);
  else,
    [h t N t0 x0] = asrc_farrow_loop(x,1/M,t0,x0,P);
  end;
 
  % plot the approximated impulse response and overlay the filter output
  subplot(5,1,3);
  plot(hh);
  hold on;
  plot(h,'k');
  hold off;
 
  % plot the magnitude response
  [H,f] = freqz(h/M,1,M*np);
  subplot(5,1,4);
  % first drop a marker at the original nyquist
  plot([pi/M pi/M],[FLOOR 0],'k');
  hold on;
  % plot dB magnitude with a -60dB floor
  plot(f,max(20*log10(abs(H)),FLOOR));
  % zoom in on the passband
  %plot(f(1:np)*M,max(20*log10(abs(H(1:np))),-60/10)*10,'r');
  hold off;
 
  % plot the phase response
  subplot(5,1,5);
  plot(f,angle(H));
  hold on;
  % zoom in on the passband
  plot(f(1:np)*M,angle(H(1:np)),'r');
  hold off;
 
end;
相关文章
|
2天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
1天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
17小时前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
3天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
16天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
151 80
|
4天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
4天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
10天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
12天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
9天前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。