阿里云PAI-DeepRec CTR 模型性能优化天池大赛——获奖队伍技术分享

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 超硬核解题思路快来看看吧!本期邀请“创新大师杯”全球AI极客挑战赛——PAI-DeepRec CTR模型性能优化挑战赛获奖队伍分享解题思路,共同推动实际工业实际场景中点击率预估模型的训练效率的提升。
阿里云联合英特尔举办的“创新大师杯”全球AI极客挑战赛—— PAI-DeepRec CTR模型性能优化挑战赛已结束 ,此次大赛旨在DeepRec中沉淀CTR模型新的优化思路和优化方向。为了和大家共享经验成果,邀请获奖队伍分享解题思路,共同推动实际工业实际场景中点击率预估模型的训练效率的提升。

大家好,我们是MetaSpore团队,三位成员孙凯、苏程成、朱亚东均来自北京数元灵科技有限公司,其中苏程成就读于西安交大,曾为数元灵科技实习生。

今年7月中旬,阿里云联合 Intel 启动了“创新大师杯”全球AI极客挑战赛——PAI-DeepRec CTR模型性能优化,全球一共有超过3800支队伍报名参加比赛。经过近 5 个月的努力,我们在保障 6 个经典的 CTR 模型AUC 基本不损失的前提下,将训练效率提升了 3 倍以上,减少了接近 70% 的训练时间。团队在全球初赛和全球复赛都获得了排名第一的成绩,本文将就比赛中的整体思路和具体方案进行阐述。

解题思路

首先必须承认,这是一道比较难的题目。因为 DeepRec 已经集成了来自 Alibaba、Intel、Google等众多优秀工程师的智慧,在这个基础上再进行性能优化,不得不说是一个非常具有挑战性的问题。经过长时间的迭代,团队优化思路如下图所示,主要可以概括为一下 3 个方面:

image.png

  1. CTR稀疏模型训练优化:6个模型均为经典的 CTR 稀疏模型,在特征处理、算子等方面可能具有一定的优化空间。
  2. DeepRec训练加速参数调优:DeepRec 本身已经具有有来自 Alibaba 和 Intel 团队的很多优秀的技术沉淀,对模型训练有很多参数都可以进行调优。
  3. DeepRec框架性能优化:这个方面我们觉得可能在编译选项、优化器等方面有一定的空间,以便更好的发挥硬件潜能。

稀疏模型训练优化

1. 选择更快的 GRUCell

对于DIEN模型,我们注意到其使用了GRU,而GRU是串行执行,必然会耗费大量时间,因此我们先把矛头对准了GRU。

阶段一:DIEN使用的是tf.nn.rnn_cell.GRUCell接口,在查阅 tensorflow 官方文档时我们注意到tf.contrib.rnn.GRUBlockCellV2能够有更好的性能。

图片

因此我们将 tensorflow 中的tf.nn.rnn_cell.GRUCell改为了 tf.contrib.rnn.GRUBlockCellV2。tf.nn.rnn_cell.GRUCell是使用 python写的 GRU,因此其反向传播需要计算图层层传递。而tf.contrib.rnn.GRUBlockCellV2用 C++ 编写的,并且实现了 forward 和 backward,因此速度会相对快一点。

阶段二:在 GRU 的优化获得初步收益之后,我们在想能否有替代 GRU的网络结构。之后我们调研了替换 GRU 的方法,发现 SRU 可以在不损失 AUC 的情况下加快模型的训练,相比原始版本速度提升约80s。SRU 论文链接:

https://arxiv.org/pdf/1709.02755.pdf

图片

为什么 SRU 会比较快呢?我们来看GRU与SRU的实现公式:

图片

相比于GRU,SRU 对时序依赖更弱一些,SRU有 3 个步骤依赖于前面的状态,并且依赖 C(t-1) 的操作使用的是 Hadamard 积,计算量更小;论文最后还通过消融实验发现,与C(t-1)相关的 2 个操作可以省略,因此代码实现中并没有粉色部分。

阶段三(未采用):既然 GRU 能改成 SRU,那 SRU 能否继续优化呢,我们带着这个疑问开始尝试优化SRU,最终我们得到了一个保持 AUC 不变的简化版 SRU,其速度又能够提升 50s 左右。由于并没有严格的理论分析,最终我们并未把这个版本提交上去,不过在代码记录了这个版本。

2. 优化稀疏特征表示

在查看DeepFM 模型的 Timeline 图(下图所示),我们发现其中有大量的 OneHot 算子异常耗时。

图片

我们注意到官方文档中描述embedding_column 速度会更快,而且更适合高维稀疏的类别特征,于是我们将Indicator_column替换为了embedding_column。

图片

对比结果如下:

图片

训练加速参数调优

开启流水线在阅读 DeepRec 文档时,我们注意到了 AutoMicroBatch,它的本质是一个模型训练的流水线,多个MicroBatch 对梯度进行累加后更新至 variable,DeepRec 文档中给出的实测效果下图所示。

图片

我们首先对这五个模型开启 micro_batch 进行了实验,发现Wide & Deep 模型不能使。我们首先对这五个模型开启micro_batch 进行了实验,发现Wide & Deep 模型不能使用 micro_batch,其使用的tf.feature_column.linear_model 接口与 micro_batch 冲突,导致运行crash,如下左图示。因此我们将 Wide & Deep 模型使用的 tf.feature_column.linear_model 进行了重写,如下右图所示。

图片

经过了以上的准备,我们开启了micro_batch 的性能优化。

  1. 我们最初对所有模型都设置了相同的 micro_batch_num,经过我们实验,当micro_batch_num = 2时,所有模型都可达到 AUC 要求,相对原始版本速度可以提升900s左右。
  2. 当 micro_batch_num 再大一点,DIEN 模型的 AUC 会低于赛题标准,其他几个模型AUC基本没有变化。因此,我们对DIEN 模型进行了特殊处理,也就是给它单独设置一个 micro_batch_num ,最终经过我们实验,我们给DIEN模型 micro_batch_num 设置为 2,其他几个模型采用默认值 8。

对比结果如下:

图片

底层框架性能调优

1. 优化编译选项

在DeepRec比赛教程中给出的编译选项如下

bazel build  -c opt --config=opt  --config=mkl_threadpool --define build_with_mkl_dnn_v1_only=true

该编译选项使用了针对intel处理器进行优化的 mkl_threadpool。tensorflow有很多可配置的编译选项,不同的编译选项会编译出不同性能的框架,经过我们尝试,在本次比赛中,经过优化编译选项,相较原始版本速度提升130s左右。

编译选项如下:

bazel build -c opt --config=opt //tensorflow/tools/pip_package:build_pip_package

对比结果如下:

图片

2. 其他底层优化选项

下面是我们对于其他底层优化的想法与探索:

  1. 使用微软开源的 mimalloc 作为内存分配器可以进一步优化性能,实测可以节省 4% 的时间,但由于时间关系我们并未打包提交。
  2. MKL 库有比较多算子可供使用,可以针对不同的算子选择性地调用 MKL,这一方向也由于时间的关系没有来得及完成。

总结

在 DeepCTR 比赛中,我们从稀疏模型、训练加速调优、底层框架调优等 3 个方面出发,主要做了以上 5 点的优化,其中 GRU 算子和稀疏特征的优化灵感来自于团队之前在 MetaSpore 的开发中的技术沉淀。决赛阶段遇到了各路好手,很多问题的切入点独到而新颖,非常有启发性,值得我们学习和借鉴。

最后,将以上所有优化点进行叠加,我们得到如下总运行时间对比图,可以清晰的看到,经过我们的优化,模型训练效率得到 3 倍以上提升,训练时间减少了 70%。

图片

注:以上测试都是在我们本地机器(8核16G)上进行的测试,因此与线上成绩有一定差异。

Github 链接:

https://github.com/meta-soul/DeepRec/tree/tianchi

DeepRec开源地址:

https://github.com/alibaba/DeepRec

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
3月前
|
机器学习/深度学习 测试技术
阿里云入选Gartner数据科学和机器学习平台挑战者象限
Gartner® 正式发布了《数据科学与机器学习平台魔力象限》报告(Magic Quadrant™ for Data Science and Machine Learning Platforms),阿里云成为唯一一家入选该报告的中国厂商,被评为“挑战者”(Challengers)。
|
5天前
|
人工智能 JSON 算法
魔搭支持在阿里云人工智能平台PAI上进行模型训练、部署了!
现在,魔搭上的众多模型支持在阿里云人工智能平台PAI-Model Gallery上使用阿里云算力资源进行模型训练和部署啦!
|
18天前
|
开发者 Python
阿里云PAI DSW快速部署服务
在使用阿里云DSW实例进行开发的时候,可能需要快速部署服务测试应用效果。DSW实例目前已经支持通过自定义服务访问配置功能,对外提供服务访问能力,您在应用开发过程中无需分享整个DSW实例,即可将服务分享给协作开发者进行测试和验证。
68 23
|
3天前
|
并行计算 PyTorch 算法框架/工具
阿里云PAI-部署Qwen2-VL-72B
阿里云PAI-部署Qwen2-VL-72B踩坑实录
|
2月前
|
机器学习/深度学习 人工智能 算法
国内首家! 阿里云人工智能平台 PAI 通过 ITU 国际标准测评
阿里云人工智能平台 PAI 顺利通过中国信通院组织的 ITU-T AICP-GA国际标准和《智算工程平台能力要求》国内标准一致性测评,成为国内首家通过该标准的企业。阿里云人工智能平台 PAI 参与完成了智算安全、AI 能力中心、数据工程、模型开发训练、模型推理部署等全部八个能力域,共计220余个用例的测试,并100%通过测试要求,获得了 ITU 国际标准和国内可信云标准评估通过双证书。
国内首家! 阿里云人工智能平台 PAI 通过 ITU 国际标准测评
|
24天前
|
机器学习/深度学习 人工智能 自然语言处理
【NeurIPS'24】阿里云 PAI 团队论文被收录为 Spotlight,并完成主题演讲分享
12月10日,NeurIPS 2024在温哥华开幕,阿里云PAI团队论文《PertEval: Unveiling Real Knowledge Capacity of LLMs with Knowledge-Invariant Perturbations》入选Spotlight,PAI团队还进行了“可信AI的技术解读与最佳实践”主题演讲,展示AI工程化平台产品能力。
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
阿里云人工智能平台 PAI 团队发表的图像编辑算法论文在 MM2024 上正式亮相发表。ACM MM(ACM国际多媒体会议)是国际多媒体领域的顶级会议,旨在为研究人员、工程师和行业专家提供一个交流平台,以展示在多媒体领域的最新研究成果、技术进展和应用案例。其主题涵盖了图像处理、视频分析、音频处理、社交媒体和多媒体系统等广泛领域。此次入选标志着阿里云人工智能平台 PAI 在图像编辑算法方面的研究获得了学术界的充分认可。
【MM2024】阿里云 PAI 团队图像编辑算法论文入选 MM2024
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
【EMNLP2024】阿里云人工智能平台 PAI 多篇论文入选 EMNLP2024
阿里云人工智能平台 PAI 的多篇论文在 EMNLP2024 上入选。论文成果是阿里云与华南理工大学金连文教授团队、复旦大学王鹏教授团队共同研发。EMNLP 是人工智能自然语言处理领域的顶级国际会议,聚焦于自然语言处理技术在各个应用场景的学术研究,尤其重视自然语言处理的实证研究。该会议曾推动了预训练语言模型、文本挖掘、对话系统、机器翻译等自然语言处理领域的核心创新,在学术和工业界都有巨大的影响力。此次入选标志着阿里云人工智能平台 PAI 在自然语言处理和多模态算法能力方面研究获得了学术界认可。
|
3月前
|
JSON 测试技术 API
阿里云PAI-Stable Diffusion开源代码浅析之(二)我的png info怎么有乱码
阿里云PAI-Stable Diffusion开源代码浅析之(二)我的png info怎么有乱码
|
5月前
|
机器学习/深度学习 存储 缓存
Java本地高性能缓存实践问题之阿里云机器学习团队开源社区的问题如何解决
Java本地高性能缓存实践问题之阿里云机器学习团队开源社区的问题如何解决

热门文章

最新文章

相关产品

  • 人工智能平台 PAI