【ANFIS 回归预测】基于平均定位误差 D 的 ANFIS 实现数据非线性回归附matlab代码

本文涉及的产品
注册配置 MSE Nacos/ZooKeeper,118元/月
任务调度 XXL-JOB 版免费试用,400 元额度,开发版规格
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
简介: 【ANFIS 回归预测】基于平均定位误差 D 的 ANFIS 实现数据非线性回归附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法       神经网络预测       雷达通信      无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

⛄ 内容介绍

阐述了自适应模糊推理系统 ( Adaptive Network-based Fuzzy Inference System,ANFIS)网络 ,提出了水运货运量预测的 ANFIS网络预测模型 .以 MATLAB为工具 ,以 1 985~ 2 0 0 1年我国水运货运量为训练样本 ;2 0 0 2年我国水运货运量为校验样本 ,对网络进行训练后 ,预测了 2 0 0 3~2 0 1 0年我国水运货运量 .估算结果表明 ,同 BP神经网络模型相比 ,此模型具有更高的准确性 .

⛄ 运行结果

⛄ 部分代码展示

function plotit(targets, outputs, Name)


   errors=targets-outputs;

   MSE=mean(errors.^2);

   RMSE=sqrt(MSE);

   error_mean=mean(errors);

   error_std=std(errors);

   subplot(2,2,[1 2]);

   plot(targets,'-.',...

   'LineWidth',1,...

   'MarkerSize',10,...

   'Color',[0.0,0.9,0.0]);

   hold on;

   plot(outputs,'--',...

   'LineWidth',2,...

   'MarkerSize',10,...

   'Color',[0.9,0.0,0.9]);

   legend('Target','Output');

   title(Name);

   xlabel('Samples');

   grid on;

   subplot(2,2,3);

   plot(errors,':',...

   'LineWidth',1.5,...

   'MarkerSize',3,...

   'Color',[0.4,0.1,0.1]);

   title(['MSE = ' num2str(MSE) ', RMSE = ' num2str(RMSE)]);

   ylabel('Errors');

   grid on;

   subplot(2,2,4);

   h=histfit(errors, 80);

   h(1).FaceColor = [.9 .8 .5];

   h(2).Color = [.2 .9 .2];

   title(['Error Mean = ' num2str(error_mean) ', Error StD = ' num2str(error_std)]);

end

⛄ 参考文献

Dataset cite:  Singh, A., Kotiyal, V., Sharma, S., Nagar, J. and Lee, C.C., 2020. A Machine Learning Approach to Predict the Average Localization Error With Applications to Wireless Sensor Networks. IEEE Access, 8, pp.208253-208263.

⛳️ 代码获取关注我

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料



相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
目录
打赏
0
0
0
0
850
分享
相关文章
基于指纹图像的数据隐藏和提取matlab仿真
本内容介绍了一种基于指纹图像的数据隐藏算法,利用指纹的个体差异性和稳定性实现信息嵌入。完整程序运行无水印,基于Matlab2022a开发。指纹图像由脊线和谷线组成,其灰度特性及纹理复杂性为数据隐藏提供可能,但也受噪声影响。核心代码附详细中文注释与操作视频,适合研究数字版权保护、秘密通信等领域应用。
基于IEKF迭代扩展卡尔曼滤波算法的数据跟踪matlab仿真,对比EKF和UKF
本项目基于MATLAB2022A实现IEKF迭代扩展卡尔曼滤波算法的数据跟踪仿真,对比EKF和UKF的性能。通过仿真输出误差收敛曲线和误差协方差收敛曲线,展示三种滤波器的精度差异。核心程序包括数据处理、误差计算及可视化展示。IEKF通过多次迭代线性化过程,增强非线性处理能力;UKF避免线性化,使用sigma点直接处理非线性问题;EKF则通过一次线性化简化处理。
基于PSO粒子群优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-LSTM-SAM网络时间序列预测算法。使用Matlab2022a开发,完整代码含中文注释及操作视频。算法结合卷积层提取局部特征、LSTM处理长期依赖、自注意力机制捕捉全局特征,通过粒子群优化提升预测精度。适用于金融市场、气象预报等领域,提供高效准确的预测结果。
基于WOA鲸鱼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB 2022a实现时间序列预测,采用CNN-GRU-SAM网络结构,结合鲸鱼优化算法(WOA)优化网络参数。核心代码含操作视频,运行效果无水印。算法通过卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征,全连接层整合输出。数据预处理后,使用WOA迭代优化,最终输出最优预测结果。
基于GA遗传优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本项目使用MATLAB 2022a实现时间序列预测算法,完整程序无水印。核心代码包含详细中文注释和操作视频。算法基于CNN-LSTM-SAM网络,融合卷积层、LSTM层与自注意力机制,适用于金融市场、气象预报等领域。通过数据归一化、种群初始化、适应度计算及参数优化等步骤,有效处理非线性时间序列,输出精准预测结果。
基于WOA鲸鱼优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本内容介绍了一种基于CNN-LSTM-SAM网络与鲸鱼优化算法(WOA)的时间序列预测方法。算法运行于Matlab2022a,完整程序无水印并附带中文注释及操作视频。核心流程包括数据归一化、种群初始化、适应度计算及参数更新,最终输出最优网络参数完成预测。CNN层提取局部特征,LSTM层捕捉长期依赖关系,自注意力机制聚焦全局特性,全连接层整合特征输出结果,适用于复杂非线性时间序列预测任务。
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
307 13

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等