基于隶属度函数模糊CMAC神经网络算法matlab仿真

简介: 基于隶属度函数模糊CMAC神经网络算法matlab仿真

1.算法描述

   CMAC神经网络具有小脑的机能,因而,被广泛应用于机器人的运动控制。或者反过来说,正是为了机器人的运动控制,Albus构造了CMAC神经系统,以模拟脊椎动物的小脑机能。 正如Albus所说的:“然而,对我来说,CMAC最重要的特征是,它提供了一种认识和理解脑计算的途径,导致了一系列关于智能系统积木的重要见解。”为此,Albus又称CMAC神经网络为小脑算术计算模型(Cerebellar Model ArithmeTIc Computer, CMAC)。

   泛化能力(generalization ability)是指机器学习算法对新鲜样本的适应能力。 学习的目的是学到隐含在数据背后的规律,对具有同一规律的学习集以外的数据,经过训练的网络也能给出合适的输出。CMAC网络中,若两个输入向量相近,则他们所触发的神经元有重叠,距离越近,重叠越多;若两个输入向量相距较远,则它们触发的神经元没有重叠。因此CMAC网络具有局部泛化能力,它的泛化能力源自于它的网络结构本身。

    影响CMAC泛化精度的主要因素有:训练精度、泛化常数和样本点选择。对于一个神经网络来说,泛化能力越强,意味着经过样本点训练后,对于样本集附近的非样本点的输入,网络输出与期望输出间的误差越小。

1)CMAC是局部逼近神经网络,只对输入空间的小部分范围进行训练,只有相应小部分的几个权值调节神经网络的输出,因此对于每次的输入输出数据需要调整的权值很少,学习速度比全局神经网络快,更能符合实时控制的要求。
2)CMAC具有较强的输入和输出的映射能力,并且可以根据不同的精度要求来逼近任意类型函数。
3)CMAC具有局部泛化能力,对具有同一规律的学习集以外的数据,经过训练,网络也能给出合适的输出。
4)CMAC采用查表寻址方式,易于计算机编程实现,网络形式简单,在线计算速度快。

2.仿真效果预览
matlab2022a仿真结果如下:

ba1ad9c42177230365d932c66aed6ce2_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
0744a9157b450de03737dc0f14433a85_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
abbc8f47a3196fe4e995ea62c0041946_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.MATLAB核心程序

y=y1_train;%因变量y
 
min_in=min(t);%输入自变量最小值
max_in=max(t);%输入自变量最大值
n=numel(t);%自变量的位数
 
size_n=360;%量化等级,越大精度越高
 
s=[1:size_n];%S空间,输入量化后的离散空间
 
train_num=180;%用于训练的样本个数
 
maxgen=50;%最大迭代次数
 
mse=zeros(1,maxgen);%均方误差向量
gen=0;%实际迭代次数
eta=1.0;%学习率η
error_goal=0.00001;%误差精度要求
A_star=6;%每个状态对应的关联单元个数
common_unit=5;%相邻关联组有相同关联单元个数
a_num=size_n*A_star-(size_n-1)*common_unit;%关联单元总数
a=ones(1,a_num);% a 向量
w=zeros(1,a_num);% 权值向量
 
% 获取训练样本 的输入和输出
train_in=zeros(1,train_num);%训练样本输入
train_out=zeros(1,train_num);%训练样本输出
 
for i=1:train_num
    train_in(i)=t(floor((i-1)*n/train_num+1));
    train_out(i)=y(floor((i-1)*n/train_num+1));
end
 
% 开始训练样本
for i=1:maxgen
    gen=i;
    for j=1:train_num
        s_seq=floor((train_in(j)-min_in)/(max_in-min_in)*(size_n-1))+1;%量化空间S的序号
        w_seq=(s_seq-1)*(A_star-common_unit)+1;%权值序号
        ye(j)=sum(w(w_seq:w_seq+A_star-1));%实际输出        
        for k=w_seq:w_seq+A_star-1 %修正权值
            w(k)=w(k)+eta*(train_out(j)-ye(j))/A_star;
        end        
    end
    error=0;
    for j=1:train_num
        error=error+(train_out(j)-ye(j))^2;
    end
    mse(i)=error;
    if error<error_goal %误差达到目标值,退出训练
        break;
    end    
end
%检验训练好的网络
t2=x_test;% 自变量t
y2=y1_test;%因变量y
n=numel(t2);%自变量的位数
min_in=min(t2);%输入自变量最小值
max_in=max(t2);%输入自变量最大值
n=numel(t2);%自变量的位数
size_n=360;%量化等级,越大精度越高
for i=1:n
    s_seq=floor((t2(i)-min_in)/(max_in-min_in)*(size_n-1))+1;%S序号
    w_seq=(s_seq-1)*(A_star-common_unit)+1;%权值序号
    yp(i)=sum(w(w_seq:w_seq+A_star-1));
end
相关文章
|
7天前
|
算法 Serverless
基于魏格纳函数和焦散线方法的自加速光束matlab模拟与仿真
本项目基于魏格纳函数和焦散线方法,使用MATLAB 2022A模拟自加速光束。通过魏格纳函数法生成多种自加速光束,并设计相应方法,展示仿真结果。核心程序包括相位和幅度的计算、光场分布及拟合分析,实现对光束传播特性的精确控制。应用领域涵盖光学成像、光操控和光束聚焦等。 关键步骤: 1. 利用魏格纳函数计算光场分布。 2. 模拟并展示自加速光束的相位和幅度图像。 3. 通过拟合分析,验证光束加速特性。 该算法原理基于魏格纳函数描述光场分布,结合数值模拟技术,实现对光束形状和传播特性的精确控制。通过调整光束相位分布,可改变其传播特性,如聚焦或加速。
|
7天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
4天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
6天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
5天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
20天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
156 80
|
8天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
8天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
13天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
16天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。