39-微服务技术栈(高级):分布式搜索引擎ElasticSearch(索引库、文档操作)

本文涉及的产品
注册配置 MSE Nacos/ZooKeeper,118元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
云原生网关 MSE Higress,422元/月
简介: 在前面读者朋友们可以了解到ES承载着和MySQL一样的“存储-查询”功能,那么就类似的会有建表语句、表结构、表数据,有了这些才可以存储-查询数据。而这些对应的在ES中是:Mapping映射(表结构-建表语句)、索引库(表本身)、文档(表数据)。本节笔者将带领大家完整上述概念的创建、使用。

1.es的一些概念

elasticsearch中有很多独有的概念,与mysql中略有差别,但也有相似之处。

1.1.文档和字段

elasticsearch是面向文档(Document)存储的,可以是数据库中的一条商品数据,一个订单信息。文档数据会被序列化为json格式后存储在elasticsearch中:

而Json文档中往往包含很多的字段(Field),类似于数据库中的列。

1.2.索引和映射

索引(Index),就是相同类型的文档的集合。例如:

  • 所有用户文档,就可以组织在一起,称为用户的索引;
  • 所有商品的文档,可以组织在一起,称为商品的索引;
  • 所有订单的文档,可以组织在一起,称为订单的索引;

因此,我们可以把索引当做是数据库中的表。

数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有映射(mapping),是索引中文档的字段约束信息,类似表的结构约束。

1.3.mysql与elasticsearch

我们统一的把mysql与elasticsearch的概念做一下对比:

MySQL

Elasticsearch

说明

Table

Index

索引(index),就是文档的集合,类似数据库的表(table)

Row

Document

文档(Document),就是一条条的数据,类似数据库中的行(Row),文档都是JSON格式

Column

Field

字段(Field),就是JSON文档中的字段,类似数据库中的列(Column)

Schema

Mapping

Mapping(映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构(Schema)

SQL

DSL

DSL是elasticsearch提供的JSON风格的请求语句,用来操作elasticsearch,实现CRUD

是不是说,我们学习了elasticsearch就不再需要mysql了呢?并不是如此,两者各自有自己的擅长支出:

  • Mysql:擅长事务类型操作,可以确保数据的安全和一致性
  • Elasticsearch:擅长海量数据的搜索、分析、计算

因此在企业中,往往是两者结合使用:

  • 对安全性要求较高的写操作,使用mysql实现
  • 对查询性能要求较高的搜索需求,使用elasticsearch实现
  • 两者再基于某种方式,实现数据的同步,保证一致性

1.4.安装es、kibana

1.4.1.安装

参考:链接

1.4.2.分词器

参考:链接

1.4.3.总结

分词器的作用是什么?

  • 创建倒排索引时对文档分词
  • 用户搜索时,对输入的内容分词

IK分词器有几种模式?

  • ik_smart:智能切分,粗粒度
  • ik_max_word:最细切分,细粒度

IK分词器如何拓展词条?如何停用词条?

  • 利用config目录的IkAnalyzer.cfg.xml文件添加拓展词典和停用词典
  • 在词典中添加拓展词条或者停用词条

2.索引库操作

索引库就类似数据库表,mapping映射就类似表的结构。我们要向es中存储数据,必须先创建“库”和“表”。

2.1.mapping映射属性

mapping是对索引库中文档的约束,常见的mapping属性包括:

  • type:字段数据类型,常见的简单类型有:
  • 字符串:text(可分词的文本)、keyword(精确值,例如:品牌、国家、ip地址)
  • 数值:long、integer、short、byte、double、float、
  • 布尔:boolean
  • 日期:date
  • 对象:object
  • index:是否创建索引,默认为true
  • analyzer:使用哪种分词器
  • properties:该字段的子字段

例如下面的json文档:

{

   "age": 21,

   "weight": 52.1,

   "isMarried": false,

   "info": "程序员Java讲师",

   "email": "zy@hh.cn",

   "score": [99.1, 99.5, 98.9],

   "name": {

       "firstName": "云",

       "lastName": "赵"

   }

}

对应的每个字段映射(mapping):

  • age:类型为 integer;参与搜索,因此需要index为true;无需分词器
  • weight:类型为float;参与搜索,因此需要index为true;无需分词器
  • isMarried:类型为boolean;参与搜索,因此需要index为true;无需分词器
  • info:类型为字符串,需要分词,因此是text;参与搜索,因此需要index为true;分词器可以用ik_smart
  • email:类型为字符串,但是不需要分词,因此是keyword;不参与搜索,因此需要index为false;无需分词器
  • score:虽然是数组,但是我们只看元素的类型,类型为float;参与搜索,因此需要index为true;无需分词器
  • name:类型为object,需要定义多个子属性
  • name.firstName;类型为字符串,但是不需要分词,因此是keyword;参与搜索,因此需要index为true;无需分词器
  • name.lastName;类型为字符串,但是不需要分词,因此是keyword;参与搜索,因此需要index为true;无需分词器

2.2.索引库的CRUD

这里我们统一使用Kibana编写DSL的方式来演示。

2.2.1.创建索引库和映射

基本语法:

  • 请求方式:PUT
  • 请求路径:/索引库名,可以自定义
  • 请求参数:mapping映射

格式:

PUT /索引库名称

{

 "mappings": {

   "properties": {

     "字段名":{

       "type": "text",

       "analyzer": "ik_smart"

     },

     "字段名2":{

       "type": "keyword",

       "index": "false"

     },

     "字段名3":{

       "properties": {

         "子字段": {

           "type": "keyword"

         }

       }

     },

     // ...略

   }

 }

}

示例:

PUT /demo

{

 "mappings": {

   "properties": {

     "info":{

       "type": "text",

       "analyzer": "ik_smart"

     },

     "email":{

       "type": "keyword",

       "index": "false"

     },

     "name":{

       "properties": {

         "firstName": {

           "type": "keyword"

         }

       }

     },

     // ... 略

   }

 }

}

2.2.2.查询索引库

基本语法

  • 请求方式:GET
  • 请求路径:/索引库名
  • 请求参数:无

格式

GET /索引库名

示例

2.2.3.修改索引库

倒排索引结构虽然不复杂,但是一旦数据结构改变(比如改变了分词器),就需要重新创建倒排索引,这简直是灾难。因此索引库一旦创建,无法修改mapping。虽然无法修改mapping中已有的字段,但是却允许添加新的字段到mapping中,因为不会对倒排索引产生影响。

语法说明

PUT /索引库名/_mapping

{

 "properties": {

   "新字段名":{

     "type": "integer"

   }

 }

}

示例

2.2.4.删除索引库

语法:

  • 请求方式:DELETE
  • 请求路径:/索引库名
  • 请求参数:无

格式:

DELETE /索引库名

在kibana中测试:

2.2.5.总结

索引库操作有哪些?

  • 创建索引库:PUT /索引库名
  • 查询索引库:GET /索引库名
  • 删除索引库:DELETE /索引库名
  • 添加字段:PUT /索引库名/_mapping

3.文档操作

3.1.新增文档

语法:

POST /索引库名/_doc/文档id

{

   "字段1": "值1",

   "字段2": "值2",

   "字段3": {

       "子属性1": "值3",

       "子属性2": "值4"

   },

   // ...

}

示例:

POST /heima/_doc/1

{

   "info": "程序员Java",

   "email": "zy@itcast.cn",

   "name": {

       "firstName": "云",

       "lastName": "赵"

   }

}

响应:

针对同一个index,其中version在每次写操作后都会+1(新增、修改、删除)

3.2.查询文档

根据rest风格,新增是post,查询应该是get,不过查询一般都需要条件,这里我们把文档id带上。

语法:

GET /{索引库名称}/_doc/{id}

通过kibana查看数据:

GET /heima/_doc/1

查看结果:

3.3.删除文档

删除使用DELETE请求,同样,需要根据id进行删除:

语法:

DELETE /{索引库名}/_doc/id值

示例:

# 根据id删除数据

DELETE /heima/_doc/1

结果:

3.4.修改文档

修改有两种方式:

  • 全量修改:直接覆盖原来的文档
  • 增量修改:修改文档中的部分字段

3.4.1.全量修改

全量修改是覆盖原来的文档,其本质是:

  • 根据指定的id删除文档
  • 新增一个相同id的文档

注意:如果根据id删除时,id不存在,第二步的新增也会执行,也就从修改变成了新增操作了。

语法:

PUT /{索引库名}/_doc/文档id

{

   "字段1": "值1",

   "字段2": "值2",

   // ... 略

}

示例:

PUT /heima/_doc/1

{

   "info": "黑马程序员高级Java讲师",

   "email": "zy@itcast.cn",

   "name": {

       "firstName": "云",

       "lastName": "赵"

   }

}

3.4.2.增量修改

增量修改是只修改指定id匹配的文档中的部分字段。

语法:

POST /{索引库名}/_update/文档id

{

   "doc": {

        "字段名": "新的值",

   }

}

示例:

POST /heima/_update/1

{

 "doc": {

   "email": "ZhaoYun@itcast.cn"

 }

}

3.5.总结

文档操作有哪些?

  • 创建文档:POST /{索引库名}/_doc/文档id   { json文档 }
  • 查询文档:GET /{索引库名}/_doc/文档id
  • 删除文档:DELETE /{索引库名}/_doc/文档id
  • 修改文档:
  • 全量修改:PUT /{索引库名}/_doc/文档id { json文档 }
  • 增量修改:POST /{索引库名}/_update/文档id { "doc": {字段}}

4.RestAPI

ES官方提供了各种不同语言的客户端,用来操作ES。这些客户端的本质就是组装DSL语句,通过http请求发送给ES。官方文档地址:https://www.elastic.co/guide/en/elasticsearch/client/index.html

其中的Java Rest Client又包括两种:

  • Java Low Level Rest Client
  • Java High Level Rest Client

我们学习的是Java HighLevel Rest Client客户端API

4.0.导入Demo工程

4.0.1.导入数据

首先导入提供的数据库数据:📎tb_hotel.sql

数据结构如下:

CREATE TABLE `tb_hotel` (

 `id` bigint(20) NOT NULL COMMENT '酒店id',

 `name` varchar(255) NOT NULL COMMENT '酒店名称;例:7天酒店',

 `address` varchar(255) NOT NULL COMMENT '酒店地址;例:航头路',

 `price` int(10) NOT NULL COMMENT '酒店价格;例:329',

 `score` int(2) NOT NULL COMMENT '酒店评分;例:45,就是4.5分',

 `brand` varchar(32) NOT NULL COMMENT '酒店品牌;例:如家',

 `city` varchar(32) NOT NULL COMMENT '所在城市;例:上海',

 `star_name` varchar(16) DEFAULT NULL COMMENT '酒店星级,从低到高分别是:1星到5星,1钻到5钻',

 `business` varchar(255) DEFAULT NULL COMMENT '商圈;例:虹桥',

 `latitude` varchar(32) NOT NULL COMMENT '纬度;例:31.2497',

 `longitude` varchar(32) NOT NULL COMMENT '经度;例:120.3925',

 `pic` varchar(255) DEFAULT NULL COMMENT '酒店图片;例:/img/1.jpg',

 PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

4.0.2.导入项目

然后导入提供的项目:📎hotel-demo.zip

项目结构如图:

4.0.3.mapping映射分析

创建索引库,最关键的是mapping映射,而mapping映射要考虑的信息包括:

  • 字段名
  • 字段数据类型
  • 是否参与搜索
  • 是否需要分词
  • 如果分词,分词器是什么?

其中:

  • 字段名、字段数据类型,可以参考数据表结构的名称和类型
  • 是否参与搜索要分析业务来判断,例如图片地址,就无需参与搜索
  • 是否分词呢要看内容,内容如果是一个整体就无需分词,反之则要分词
  • 分词器,我们可以统一使用ik_max_word

来看下酒店数据的索引库结构:

PUT /hotel

{

 "mappings": {

   "properties": {

     "id": {

       "type": "keyword"

     },

     "name":{

       "type": "text",

       "analyzer": "ik_max_word",

       "copy_to": "all"

     },

     "address":{

       "type": "keyword",

       "index": false

     },

     "price":{

       "type": "integer"

     },

     "score":{

       "type": "integer"

     },

     "brand":{

       "type": "keyword",

       "copy_to": "all"

     },

     "city":{

       "type": "keyword",

       "copy_to": "all"

     },

     "starName":{

       "type": "keyword"

     },

     "business":{

       "type": "keyword"

     },

     "location":{

       "type": "geo_point"

     },

     "pic":{

       "type": "keyword",

       "index": false

     },

     "all":{

       "type": "text",

       "analyzer": "ik_max_word"

     }

   }

 }

}

几个特殊字段说明:

  • location:地理坐标,里面包含精度、纬度
  • all:一个组合字段,其目的是将多字段的值 利用copy_to合并,提供给用户搜索

地理坐标说明:

copy_to说明:

4.0.4.初始化RestClient

在elasticsearch提供的API中,与elasticsearch一切交互都封装在一个名为RestHighLevelClient的类中,必须先完成这个对象的初始化,建立与elasticsearch的连接。

分为三步:

1)引入es的RestHighLevelClient依赖:

<dependency>

   <groupId>org.elasticsearch.client</groupId>

   <artifactId>elasticsearch-rest-high-level-client</artifactId>

</dependency>

2)因为SpringBoot默认的ES版本是7.6.2,所以我们需要覆盖默认的ES版本:

<properties>

   <java.version>1.8</java.version>

   <elasticsearch.version>7.12.1</elasticsearch.version>

</properties>

3)初始化RestHighLevelClient,初始化的代码如下:

RestHighLevelClient client = new RestHighLevelClient(RestClient.builder(

       HttpHost.create("http://192.168.150.101:9200")

));

这里为了单元测试方便,我们创建一个测试类HotelIndexTest,然后将初始化的代码编写在@BeforeEach方法中:

package cn.itcast.hotel;


import org.apache.http.HttpHost;

import org.elasticsearch.client.RestHighLevelClient;

import org.junit.jupiter.api.AfterEach;

import org.junit.jupiter.api.BeforeEach;

import org.junit.jupiter.api.Test;


import java.io.IOException;


public class HotelIndexTest {

   private RestHighLevelClient client;


   @BeforeEach

   void setUp() {

       this.client = new RestHighLevelClient(RestClient.builder(

               HttpHost.create("http://192.168.150.101:9200")

       ));

   }


   @AfterEach

   void tearDown() throws IOException {

       this.client.close();

   }

}

4.1.创建索引库

4.1.1.代码解读

创建索引库的API如下:

代码分为三步:

  • 1)创建Request对象。因为是创建索引库的操作,因此Request是CreateIndexRequest。
  • 2)添加请求参数,其实就是DSL的JSON参数部分。因为json字符串很长,这里是定义了静态字符串常量MAPPING_TEMPLATE,让代码看起来更加优雅。
  • 3)发送请求,client.indices()方法的返回值是IndicesClient类型,封装了所有与索引库操作有关的方法。

4.1.2.完整示例

在hotel-demo的cn.itcast.hotel.constants包下,创建一个类,定义mapping映射的JSON字符串常量:

package cn.itcast.hotel.constants;


public class HotelConstants {

   public static final String MAPPING_TEMPLATE = "{\n" +

           "  \"mappings\": {\n" +

           "    \"properties\": {\n" +

           "      \"id\": {\n" +

           "        \"type\": \"keyword\"\n" +

           "      },\n" +

           "      \"name\":{\n" +

           "        \"type\": \"text\",\n" +

           "        \"analyzer\": \"ik_max_word\",\n" +

           "        \"copy_to\": \"all\"\n" +

           "      },\n" +

           "      \"address\":{\n" +

           "        \"type\": \"keyword\",\n" +

           "        \"index\": false\n" +

           "      },\n" +

           "      \"price\":{\n" +

           "        \"type\": \"integer\"\n" +

           "      },\n" +

           "      \"score\":{\n" +

           "        \"type\": \"integer\"\n" +

           "      },\n" +

           "      \"brand\":{\n" +

           "        \"type\": \"keyword\",\n" +

           "        \"copy_to\": \"all\"\n" +

           "      },\n" +

           "      \"city\":{\n" +

           "        \"type\": \"keyword\",\n" +

           "        \"copy_to\": \"all\"\n" +

           "      },\n" +

           "      \"starName\":{\n" +

           "        \"type\": \"keyword\"\n" +

           "      },\n" +

           "      \"business\":{\n" +

           "        \"type\": \"keyword\"\n" +

           "      },\n" +

           "      \"location\":{\n" +

           "        \"type\": \"geo_point\"\n" +

           "      },\n" +

           "      \"pic\":{\n" +

           "        \"type\": \"keyword\",\n" +

           "        \"index\": false\n" +

           "      },\n" +

           "      \"all\":{\n" +

           "        \"type\": \"text\",\n" +

           "        \"analyzer\": \"ik_max_word\"\n" +

           "      }\n" +

           "    }\n" +

           "  }\n" +

           "}";

}

在hotel-demo中的HotelIndexTest测试类中,编写单元测试,实现创建索引:

@Test

void createHotelIndex() throws IOException {

   // 1.创建Request对象

   CreateIndexRequest request = new CreateIndexRequest("hotel");

   // 2.准备请求的参数:DSL语句

   request.source(MAPPING_TEMPLATE, XContentType.JSON);

   // 3.发送请求

   client.indices().create(request, RequestOptions.DEFAULT);

}

4.2.删除索引库

删除索引库的DSL语句非常简单:

DELETE /hotel

与创建索引库相比:

  • 请求方式从PUT变为DELTE
  • 请求路径不变
  • 无请求参数

所以代码的差异,注意体现在Request对象上。依然是三步走:

  • 1)创建Request对象。这次是DeleteIndexRequest对象
  • 2)准备参数。这里是无参
  • 3)发送请求。改用delete方法

在hotel-demo中的HotelIndexTest测试类中,编写单元测试,实现删除索引:

@Test

void testDeleteHotelIndex() throws IOException {

   // 1.创建Request对象

   DeleteIndexRequest request = new DeleteIndexRequest("hotel");

   // 2.发送请求

   client.indices().delete(request, RequestOptions.DEFAULT);

}

4.3.判断索引库是否存在

判断索引库是否存在,本质就是查询,对应的DSL是:

GET /hotel

因此与删除的Java代码流程是类似的。依然是三步走:

  • 1)创建Request对象。这次是GetIndexRequest对象
  • 2)准备参数。这里是无参
  • 3)发送请求。改用exists方法

@Test

void testExistsHotelIndex() throws IOException {

   // 1.创建Request对象

   GetIndexRequest request = new GetIndexRequest("hotel");

   // 2.发送请求

   boolean exists = client.indices().exists(request, RequestOptions.DEFAULT);

   // 3.输出

   System.err.println(exists ? "索引库已经存在!" : "索引库不存在!");

}

4.4.总结

JavaRestClient操作elasticsearch的流程基本类似。核心是client.indices()方法来获取索引库的操作对象。

索引库操作的基本步骤:

  • 初始化RestHighLevelClient
  • 创建XxxIndexRequest。XXX是Create、Get、Delete
  • 准备DSL( Create时需要,其它是无参)
  • 发送请求。调用RestHighLevelClient#indices().xxx()方法,xxx是create、exists、delete

5.RestClient操作文档

为了与索引库操作分离,我们再次参加一个测试类,做两件事情:

  • 初始化RestHighLevelClient
  • 我们的酒店数据在数据库,需要利用IHotelService去查询,所以注入这个接口

package cn.itcast.hotel;


import cn.itcast.hotel.pojo.Hotel;

import cn.itcast.hotel.service.IHotelService;

import org.junit.jupiter.api.AfterEach;

import org.junit.jupiter.api.BeforeEach;

import org.junit.jupiter.api.Test;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.boot.test.context.SpringBootTest;


import java.io.IOException;

import java.util.List;


@SpringBootTest

public class HotelDocumentTest {

   @Autowired

   private IHotelService hotelService;


   private RestHighLevelClient client;


   @BeforeEach

   void setUp() {

       this.client = new RestHighLevelClient(RestClient.builder(

               HttpHost.create("http://192.168.150.101:9200")

       ));

   }


   @AfterEach

   void tearDown() throws IOException {

       this.client.close();

   }

}

5.1.新增文档

我们要将数据库的酒店数据查询出来,写入elasticsearch中。

5.1.1.索引库实体类

数据库查询后的结果是一个Hotel类型的对象。结构如下:

@Data

@TableName("tb_hotel")

public class Hotel {

   @TableId(type = IdType.INPUT)

   private Long id;

   private String name;

   private String address;

   private Integer price;

   private Integer score;

   private String brand;

   private String city;

   private String starName;

   private String business;

   private String longitude;

   private String latitude;

   private String pic;

}

与我们的索引库结构存在差异:

  • longitude和latitude需要合并为location

因此,我们需要定义一个新的类型,与索引库结构吻合:

package cn.itcast.hotel.pojo;


import lombok.Data;

import lombok.NoArgsConstructor;


@Data

@NoArgsConstructor

public class HotelDoc {

   private Long id;

   private String name;

   private String address;

   private Integer price;

   private Integer score;

   private String brand;

   private String city;

   private String starName;

   private String business;

   private String location;

   private String pic;


   public HotelDoc(Hotel hotel) {

       this.id = hotel.getId();

       this.name = hotel.getName();

       this.address = hotel.getAddress();

       this.price = hotel.getPrice();

       this.score = hotel.getScore();

       this.brand = hotel.getBrand();

       this.city = hotel.getCity();

       this.starName = hotel.getStarName();

       this.business = hotel.getBusiness();

       this.location = hotel.getLatitude() + ", " + hotel.getLongitude();

       this.pic = hotel.getPic();

   }

}

5.1.2.语法说明

新增文档的DSL语句如下:

POST /{索引库名}/_doc/1

{

   "name": "Jack",

   "age": 21

}

对应的java代码如图

可以看到与创建索引库类似,同样是三步走:

  • 1)创建Request对象
  • 2)准备请求参数,也就是DSL中的JSON文档
  • 3)发送请求

变化的地方在于,这里直接使用client.xxx()的API,不再需要client.indices()了。

5.1.3.完整代码

我们导入酒店数据,基本流程一致,但是需要考虑几点变化:

  • 酒店数据来自于数据库,我们需要先查询出来,得到hotel对象
  • hotel对象需要转为HotelDoc对象
  • HotelDoc需要序列化为json格式

因此,代码整体步骤如下:

  • 1)根据id查询酒店数据Hotel
  • 2)将Hotel封装为HotelDoc
  • 3)将HotelDoc序列化为JSON
  • 4)创建IndexRequest,指定索引库名和id
  • 5)准备请求参数,也就是JSON文档
  • 6)发送请求

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

@Test

void testAddDocument() throws IOException {

   // 1.根据id查询酒店数据

   Hotel hotel = hotelService.getById(61083L);

   // 2.转换为文档类型

   HotelDoc hotelDoc = new HotelDoc(hotel);

   // 3.将HotelDoc转json

   String json = JSON.toJSONString(hotelDoc);


   // 1.准备Request对象

   IndexRequest request = new IndexRequest("hotel").id(hotelDoc.getId().toString());

   // 2.准备Json文档

   request.source(json, XContentType.JSON);

   // 3.发送请求

   client.index(request, RequestOptions.DEFAULT);

}

5.2.查询文档

5.2.1.语法说明

查询的DSL语句如下:

GET /hotel/_doc/{id}

非常简单,因此代码大概分两步:

  • 准备Request对象
  • 发送请求

不过查询的目的是得到结果,解析为HotelDoc,因此难点是结果的解析。完整代码如下:

可以看到,结果是一个JSON,其中文档放在一个_source属性中,因此解析就是拿到_source,反序列化为Java对象即可。

与之前类似,也是三步走:

  • 1)准备Request对象。这次是查询,所以是GetRequest
  • 2)发送请求,得到结果。因为是查询,这里调用client.get()方法
  • 3)解析结果,就是对JSON做反序列化

5.2.2.完整代码

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

@Test

void testGetDocumentById() throws IOException {

   // 1.准备Request

   GetRequest request = new GetRequest("hotel", "61082");

   // 2.发送请求,得到响应

   GetResponse response = client.get(request, RequestOptions.DEFAULT);

   // 3.解析响应结果

   String json = response.getSourceAsString();


   HotelDoc hotelDoc = JSON.parseObject(json, HotelDoc.class);

   System.out.println(hotelDoc);

}

5.3.删除文档

删除的DSL为是这样的:

DELETE /hotel/_doc/{id}

与查询相比,仅仅是请求方式从DELETE变成GET,可以想象Java代码应该依然是三步走:

  • 1)准备Request对象,因为是删除,这次是DeleteRequest对象。要指定索引库名和id
  • 2)准备参数,无参
  • 3)发送请求。因为是删除,所以是client.delete()方法

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

@Test

void testDeleteDocument() throws IOException {

   // 1.准备Request

   DeleteRequest request = new DeleteRequest("hotel", "61083");

   // 2.发送请求

   client.delete(request, RequestOptions.DEFAULT);

}

5.4.修改文档

5.4.1.语法说明

修改我们讲过两种方式:

  • 全量修改:本质是先根据id删除,再新增
  • 增量修改:修改文档中的指定字段值

在RestClient的API中,全量修改与新增的API完全一致,判断依据是ID:

  • 如果新增时,ID已经存在,则修改
  • 如果新增时,ID不存在,则新增

这里不再赘述,我们主要关注增量修改。

代码示例如图:

与之前类似,也是三步走:

  • 1)准备Request对象。这次是修改,所以是UpdateRequest
  • 2)准备参数。也就是JSON文档,里面包含要修改的字段
  • 3)更新文档。这里调用client.update()方法

5.4.2.完整代码

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

@Test

void testUpdateDocument() throws IOException {

   // 1.准备Request

   UpdateRequest request = new UpdateRequest("hotel", "61083");

   // 2.准备请求参数

   request.doc(

       "price", "952",

       "starName", "四钻"

   );

   // 3.发送请求

   client.update(request, RequestOptions.DEFAULT);

}

5.5.批量导入文档

案例需求:利用BulkRequest批量将数据库数据导入到索引库中。

步骤如下:

  • 利用mybatis-plus查询酒店数据
  • 将查询到的酒店数据(Hotel)转换为文档类型数据(HotelDoc)
  • 利用JavaRestClient中的BulkRequest批处理,实现批量新增文档

5.5.1.语法说明

批量处理BulkRequest,其本质就是将多个普通的CRUD请求组合在一起发送。其中提供了一个add方法,用来添加其他请求:

可以看到,能添加的请求包括:

  • IndexRequest,也就是新增
  • UpdateRequest,也就是修改
  • DeleteRequest,也就是删除

因此Bulk中添加了多个IndexRequest,就是批量新增功能了。示例:

其实还是三步走:

  • 1)创建Request对象。这里是BulkRequest
  • 2)准备参数。批处理的参数,就是其它Request对象,这里就是多个IndexRequest
  • 3)发起请求。这里是批处理,调用的方法为client.bulk()方法

我们在导入酒店数据时,将上述代码改造成for循环处理即可。

5.5.2.完整代码

在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

@Test

void testBulkRequest() throws IOException {

   // 批量查询酒店数据

   List<Hotel> hotels = hotelService.list();


   // 1.创建Request

   BulkRequest request = new BulkRequest();

   // 2.准备参数,添加多个新增的Request

   for (Hotel hotel : hotels) {

       // 2.1.转换为文档类型HotelDoc

       HotelDoc hotelDoc = new HotelDoc(hotel);

       // 2.2.创建新增文档的Request对象

       request.add(new IndexRequest("hotel")

                   .id(hotelDoc.getId().toString())

                   .source(JSON.toJSONString(hotelDoc), XContentType.JSON));

   }

   // 3.发送请求

   client.bulk(request, RequestOptions.DEFAULT);

}

通过指令查询:GET /hotel/_search

5.6.小结

文档操作的基本步骤:

  • 初始化RestHighLevelClient
  • 创建XxxRequest。XXX是Index、Get、Update、Delete、Bulk
  • 准备参数(Index、Update、Bulk时需要)
  • 发送请求。调用RestHighLevelClient#.xxx()方法,xxx是index、get、update、delete、bulk
  • 解析结果(Get时需要)
相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
相关文章
|
1月前
|
自然语言处理 大数据 应用服务中间件
大数据-172 Elasticsearch 索引操作 与 IK 分词器 自定义停用词 Nginx 服务
大数据-172 Elasticsearch 索引操作 与 IK 分词器 自定义停用词 Nginx 服务
51 5
|
1月前
|
存储 分布式计算 大数据
大数据-169 Elasticsearch 索引使用 与 架构概念 增删改查
大数据-169 Elasticsearch 索引使用 与 架构概念 增删改查
54 3
|
2月前
|
安全 应用服务中间件 API
微服务分布式系统架构之zookeeper与dubbo-2
微服务分布式系统架构之zookeeper与dubbo-2
|
2月前
|
负载均衡 Java 应用服务中间件
微服务分布式系统架构之zookeeper与dubbor-1
微服务分布式系统架构之zookeeper与dubbor-1
|
1天前
|
存储 JSON 关系型数据库
Elasticsearch 索引
【11月更文挑战第3天】
10 4
|
12天前
|
测试技术 API 开发工具
ElasticSearch7.6.x 模板及滚动索引创建及注意事项
ElasticSearch7.6.x 模板及滚动索引创建及注意事项
30 8
|
23天前
|
消息中间件 存储 负载均衡
微服务与分布式系统设计看这篇就够了!
【10月更文挑战第12天】 在现代软件架构中,微服务和分布式系统设计已经成为构建可扩展、灵活和可靠应用程序的主流方法。本文将深入探讨微服务架构的核心概念、设计原则和挑战,并提供一些关于如何在分布式系统中实现微服务的实用指导。
44 2
|
24天前
|
人工智能 文字识别 Java
SpringCloud+Python 混合微服务,如何打造AI分布式业务应用的技术底层?
尼恩,一位拥有20年架构经验的老架构师,通过其深厚的架构功力,成功指导了一位9年经验的网易工程师转型为大模型架构师,薪资逆涨50%,年薪近80W。尼恩的指导不仅帮助这位工程师在一年内成为大模型架构师,还让他管理起了10人团队,产品成功应用于多家大中型企业。尼恩因此决定编写《LLM大模型学习圣经》系列,帮助更多人掌握大模型架构,实现职业跃迁。该系列包括《从0到1吃透Transformer技术底座》、《从0到1精通RAG架构》等,旨在系统化、体系化地讲解大模型技术,助力读者实现“offer直提”。此外,尼恩还分享了多个技术圣经,如《NIO圣经》、《Docker圣经》等,帮助读者深入理解核心技术。
SpringCloud+Python 混合微服务,如何打造AI分布式业务应用的技术底层?
|
29天前
|
存储 JSON Java
elasticsearch学习一:了解 ES,版本之间的对应。安装elasticsearch,kibana,head插件、elasticsearch-ik分词器。
这篇文章是关于Elasticsearch的学习指南,包括了解Elasticsearch、版本对应、安装运行Elasticsearch和Kibana、安装head插件和elasticsearch-ik分词器的步骤。
97 0
elasticsearch学习一:了解 ES,版本之间的对应。安装elasticsearch,kibana,head插件、elasticsearch-ik分词器。
|
2月前
|
NoSQL 关系型数据库 Redis
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo
mall在linux环境下的部署(基于Docker容器),docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongodb、minio详细教程,拉取镜像、运行容器
mall在linux环境下的部署(基于Docker容器),Docker安装mysql、redis、nginx、rabbitmq、elasticsearch、logstash、kibana、mongo
下一篇
无影云桌面