神奇的魔数i

简介: 接触复数是在高中的时候,那个时候不知道为啥要学习复数,而在大学依然在工程数学中依然能看到需要学习复变函数,那个时候是因为物探、测井的专业课需要用到数学物理方程,迷迷糊糊的看了,学习了一下。但是现在想想,确实挺有用的,因为数字信号分析与处理、地震波动力学、地震资料处理、测井都需要它。现在想想物探测井方向挺有趣的,但需要有深厚的数学功底。地球科学是一门很大的学问。言归正传,我们来了解欧拉公式和魔数i。

 魔数i,1545年卡尔达诺Cardano在其著作《大术》中首次介绍了复数的概念,随后,邦贝利Bomnelli于1572年在其《代数》一书中引入了复数的运算方法。它是-1的平方根,将其附在实数系上,表达式如下:

a+ib

其中:

a和b是任意实数,这样的组合称为复数。

i^2=-1

=> z=a+ib

在实数情形下,我们可以看到,距离、时间和其他物理量都显示出对这种性质的数的需要。

自1539年,卡尔达诺首次知道复数并受到其神奇性质的启发后,他一直关注着找出实三次方程的一般解的表达式。

x^3=3px+2q

按照常规理解,一次方程有一个解,二次方程两个解,那三次方程是不是有三个解。其中在实数系下只有一个实数解(费罗-)卡尔达诺解。

其解建立在q^2>=p^3上

如果q^2<p^3,则需要通过复数的方式,从而得到实数解。


我们知道幂级数在求和的过程中会考虑性态的问题。也即考虑其是发散的还是收敛的。


为啥要考虑收敛,如果不考虑收敛,发散级数得到的结论,这种明显无意义表达式的感觉经常取决于复数的性质。

通过收敛圆来判断级数是否收敛。如果严格处于圆外,则发散。如果处于圆内,则收敛。如果刚好处于圆上,则级数发散还是收敛是个极其微妙的事情。


神奇的公式:

e^2πi=1  =>e^πi+1=0


对于复平面中的单位圆:

e^ix=cosx+isinx

我们知道

e^(a+b) =e^a•e^b

将e^ix=cosx+isinx带入

=> cos(a+b) =cosa cosb-sina sinb


对于 e^3ix=(e^ix)^3

=> cos3a = cos^3 a -3cosa sin^2 a

    sin3a = 3sina cos^a -sin^3 a


也即在复数域,三角函数也成立。

      同时在考试或者做数学题的时候,采用欧拉公式,通常能达到化繁为简的目的,而这正是由于e的缘故,很神奇的一个数。


参考:《通向实在之路》


目录
相关文章
|
SQL 供应链 JavaScript
订单管理系统(OMS)搭建实战 - 低代码拖拽定制订单管理系统
订单管理系统是很多公司,特别是电商公司最常用的内部系统之一。订单管理系统的使用者通常是仓管或者运营人员,它常被用于管理用户订单,比如添加或者修改一条发货记录,与快递 API 集成以便自动更新订单号等场景。
1145 0
|
11月前
|
XML 前端开发 JavaScript
Nginx 安装配置
10月更文挑战第5天
199 4
Nginx 安装配置
|
机器学习/深度学习 算法 Python
【博士每天一篇文献-算法】Overcoming catastrophic forgetting in neural networks
本文介绍了一种名为弹性权重合并(EWC)的方法,用于解决神经网络在学习新任务时遭受的灾难性遗忘问题,通过选择性地降低对旧任务重要权重的更新速度,成功地在多个任务上保持了高性能,且实验结果表明EWC在连续学习环境中的有效性。
635 2
【博士每天一篇文献-算法】Overcoming catastrophic forgetting in neural networks
|
前端开发 JavaScript 开发者
Vue3.0商店后台管理系统项目实战-vue3搭配Element Plus框架使用
Vue3.0商店后台管理系统项目实战-vue3搭配Element Plus框架使用
389 0
|
监控 安全 Java
【Android 逆向】加壳技术简介 ( 动态加载 | 第一代加壳技术 - DEX 整体加固 | 第二代加壳技术 - 函数抽取 | 第三代加壳技术 - VMP / Dex2C | 动态库加壳技术 )
【Android 逆向】加壳技术简介 ( 动态加载 | 第一代加壳技术 - DEX 整体加固 | 第二代加壳技术 - 函数抽取 | 第三代加壳技术 - VMP / Dex2C | 动态库加壳技术 )
825 1
|
传感器 开发框架 JavaScript
HaaS EDU K1全流程体验阿里云物联网平台开发
最近入手了新玩具 HaaS EDU K1,它丰富的传感器支持、支持python和js语言的轻应用开发非常吸引我,得益于HaaS云端一体开发框架,我这种非嵌入式开发出身的小白也能够体验物联网平台开发的魅力。今天结合官方案例体验阿里云物联网平台开发。
1273 17
HaaS EDU K1全流程体验阿里云物联网平台开发
|
存储 安全 API
Jetpack之DataStore使用
前言DataStore提供了一种安全且持久的方式来存储少量数据。它不支持部分更新:如果任何字段被修改,整个对象将被序列化并持久到磁盘。它是线程安全的,非阻塞的。特别是,它解决了SharedPreferences这些设计缺陷:同步API鼓励违反StrictModeapply和commit没有发出错误信号的机制apply将阻塞fsync上的UI线程不持久-它可以返回尚未持久的状态没有一致性或事务语义在
410 0
Jetpack之DataStore使用
|
数据可视化 测试技术 定位技术
EMAS移动测试-远程真机篇
导读:本文将介绍申请远程真机以及在远程真机上执行测试任务的详细操作,包括申请远程真机、安装应用、扫码、定位、性能测试等。
5201 0
EMAS移动测试-远程真机篇
|
关系型数据库 Shell Nacos
【SpringCloud-Alibaba系列教程】16.动态配置yml以及分布式事务
动态配置yml、分布式事务以及使用seata。
1208 1
【SpringCloud-Alibaba系列教程】16.动态配置yml以及分布式事务

热门文章

最新文章