28-微服务技术栈(高级):CAP定理和Base理论

本文涉及的产品
注册配置 MSE Nacos/ZooKeeper,118元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
云原生网关 MSE Higress,422元/月
简介: 在分布式架构系统中,服务不止一个,一个完整的业务链路肯定也不止调用一个服务,此时每个服务都有自己的数据库增删改查,而每一个写操作对应一个本地事务。如果想要确保全部的业务状态一致,也就意味着需要所有的本地事务状态一致,这在我们之前的学习中肯定是不具备的,如何做到跨服务、跨数据源的事务一致性将是本章节的重点学习内容。

1.分布式事务问题

1.1.本地事务

本地事务,也就是传统的单机事务。在传统数据库事务中,必须要满足四个原则:

1.2.分布式事务

分布式事务,就是指不是在单个服务或单个数据库架构下,产生的事务,例如:

  • 跨数据源的分布式事务
  • 跨服务的分布式事务
  • 综合情况

在数据库水平拆分、服务垂直拆分之后,一个业务操作通常要跨多个数据库、服务才能完成。例如电商行业中比较常见的下单付款案例,包括下面几个行为:

  • 创建新订单
  • 扣减商品库存
  • 从用户账户余额扣除金额

完成上面的操作需要访问三个不同的微服务和三个不同的数据库。

订单的创建、库存的扣减、账户扣款在每一个服务和数据库内是一个本地事务,可以保证ACID原则。

但是当我们把三件事情看做一个"业务",要满足保证“业务”的原子性,要么所有操作全部成功,要么全部失败,不允许出现部分成功部分失败的现象,这就是分布式系统下的事务了。此时ACID难以满足,这是分布式事务要解决的问题

1.3.演示分布式事务问题

我们通过一个案例来演示分布式事务的问题:

1)创建数据库,名为seata_demo,然后导入SQL文件:

SET NAMES utf8mb4;

SET FOREIGN_KEY_CHECKS = 0;


-- ----------------------------

-- Table structure for account_tbl

-- ----------------------------

DROP TABLE IF EXISTS `account_tbl`;

CREATE TABLE `account_tbl`  (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `user_id` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,

 `money` int(11) UNSIGNED NULL DEFAULT 0,

 PRIMARY KEY (`id`) USING BTREE

) ENGINE = InnoDB AUTO_INCREMENT = 2 CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = COMPACT;


-- ----------------------------

-- Records of account_tbl

-- ----------------------------

INSERT INTO `account_tbl` VALUES (1, 'user202103032042012', 1000);


-- ----------------------------

-- Table structure for order_tbl

-- ----------------------------

DROP TABLE IF EXISTS `order_tbl`;

CREATE TABLE `order_tbl`  (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `user_id` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,

 `commodity_code` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,

 `count` int(11) NULL DEFAULT 0,

 `money` int(11) NULL DEFAULT 0,

 PRIMARY KEY (`id`) USING BTREE

) ENGINE = InnoDB AUTO_INCREMENT = 1 CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = COMPACT;


-- ----------------------------

-- Records of order_tbl

-- ----------------------------


-- ----------------------------

-- Table structure for storage_tbl

-- ----------------------------

DROP TABLE IF EXISTS `storage_tbl`;

CREATE TABLE `storage_tbl`  (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `commodity_code` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL,

 `count` int(11) UNSIGNED NULL DEFAULT 0,

 PRIMARY KEY (`id`) USING BTREE,

 UNIQUE INDEX `commodity_code`(`commodity_code`) USING BTREE

) ENGINE = InnoDB AUTO_INCREMENT = 2 CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = COMPACT;


-- ----------------------------

-- Records of storage_tbl

-- ----------------------------

INSERT INTO `storage_tbl` VALUES (1, '100202003032041', 10);


SET FOREIGN_KEY_CHECKS = 1;


2)导入课前资料提供的微服务:

📎seata-demo.zip

微服务结构中:

seata-demo:父工程,负责管理项目依赖

  • account-service:账户服务,负责管理用户的资金账户。提供扣减余额的接口
  • storage-service:库存服务,负责管理商品库存。提供扣减库存的接口
  • order-service:订单服务,负责管理订单。创建订单时,需要调用account-service和storage-service

3)启动nacos、所有微服务

4)测试下单功能,发出Post请求:

请求如下:

curl --location --request POST 'http://localhost:8082/order?userId=user202103032042012&commodityCode=100202003032041&count=20&money=200'

如图:

测试发现,当库存不足时,如果余额已经扣减,并不会回滚,出现了分布式事务问题。

2.理论基础

解决分布式事务问题,需要一些分布式系统的基础知识作为理论指导。

2.1.CAP定理

1998年,加州大学的计算机科学家 Eric Brewer 提出,分布式系统有三个指标。

  • Consistency(一致性)
  • Availability(可用性)
  • Partition tolerance (分区容错性)

它们的第一个字母分别是 C、A、P。Eric Brewer 说,这三个指标不可能同时做到。这个结论就叫做 CAP 定理。

2.1.1.一致性

Consistency(一致性):用户访问分布式系统中的任意节点,得到的数据必须一致。

比如现在包含两个节点,其中的初始数据是一致的:

当我们修改其中一个节点的数据时,两者的数据产生了差异:

要想保住一致性,就必须实现node01 到 node02的数据 同步:

2.1.2.可用性

Availability (可用性):用户访问集群中的任意健康节点,必须能得到响应,而不是超时或拒绝。如图,有三个节点的集群,访问任何一个都可以及时得到响应:

当有部分节点因为网络故障或其它原因无法访问时,代表节点不可用:

2.1.3.分区容错

Partition(分区):因为网络故障或其它原因导致分布式系统中的部分节点与其它节点失去连接,形成独立分区。

Tolerance(容错):在集群出现分区时,整个系统也要持续对外提供服务

2.1.4.矛盾

在分布式系统中,系统间的网络不能100%保证健康,一定会有故障的时候,而服务又必须对外保证服务。因此Partition Tolerance不可避免。当节点接收到新的数据变更时,就会出现问题了:

如果此时要保证一致性,就必须等待网络恢复,完成数据同步后,整个集群才对外提供服务,服务处于阻塞状态,不可用。

如果此时要保证可用性,就不能等待网络恢复,那node01、node02与node03之间就会出现数据不一致。

也就是说,在P一定会出现的情况下,A和C之间只能实现一个。

2.2.BASE理论

BASE理论是对CAP的一种解决思路,包含三个思想:

  • Basically Available(基本可用):分布式系统在出现故障时,允许损失部分可用性,即保证核心可用。
  • Soft State(软状态):在一定时间内,允许出现中间状态,比如临时的不一致状态。
  • Eventually Consistent(最终一致性):虽然无法保证强一致性,但是在软状态结束后,最终达到数据一致。

2.3.解决分布式事务的思路

分布式事务最大的问题是各个子事务的一致性问题,因此可以借鉴CAP定理和BASE理论,有两种解决思路:

  • AP模式:各子事务分别执行和提交,允许出现结果不一致,然后采用弥补措施恢复数据即可,实现最终一致。
  • CP模式:各个子事务执行后互相等待,同时提交,同时回滚,达成强一致。但事务等待过程中,处于弱可用状态。

但不管是哪一种模式,都需要在子系统事务之间互相通讯,协调事务状态,也就是需要一个事务协调者(TC)

这里的子系统事务,称为分支事务;有关联的各个分支事务在一起称为全局事务

相关文章
|
8月前
|
消息中间件 监控 Java
微服务架构深入理解 | 技术栈
微服务架构深入理解 | 技术栈
247 0
|
6月前
|
缓存 Devops 微服务
微服务01好处,随着代码越多耦合度越多,升级维护困难,微服务技术栈,异步通信技术,缓存技术,DevOps技术,搜索技术,单体架构,分布式架构将业务功能进行拆分,部署时费劲,集连失败如何解决
微服务01好处,随着代码越多耦合度越多,升级维护困难,微服务技术栈,异步通信技术,缓存技术,DevOps技术,搜索技术,单体架构,分布式架构将业务功能进行拆分,部署时费劲,集连失败如何解决
|
8月前
|
微服务
三个微服务注册中心eureka、consul、zookeeper之间的异同点以及CAP理论图
三个微服务注册中心eureka、consul、zookeeper之间的异同点以及CAP理论图
356 0
|
Arthas Java 测试技术
59-微服务技术栈(高级):在线检测工具Arthas(精准定位Java应用CPU负载过高)
开发者对于生产问题故障的排查、定位,随着微服务的喷发,也不再像是以前那边依赖纯日志、gc日志进行问题排查与定位了,本节开始介绍一个生产环境使用的排错工具Arthas,帮助大家更高效、便捷地实现生产问题排错。
304 0
|
Arthas Java 测试技术
57-微服务技术栈(高级):在线检测工具Arthas(基础指令)
开发者对于生产问题故障的排查、定位,随着微服务的喷发,也不再像是以前那边依赖纯日志、gc日志进行问题排查与定位了,本节开始介绍一个生产环境使用的排错工具Arthas,帮助大家更高效、便捷地实现生产问题排错。
328 0
|
Arthas Java 测试技术
56-微服务技术栈(高级):在线检测工具Arthas(下载安装)
开发者对于生产问题故障的排查、定位,随着微服务的喷发,也不再像是以前那边依赖纯日志、gc日志进行问题排查与定位了,本节开始介绍一个生产环境使用的排错工具Arthas,帮助大家更高效、便捷地实现生产问题排错。
245 0
|
Web App开发 Dubbo 关系型数据库
53-微服务技术栈(高级):微服务网关Soul(Soul网关接入与验证)
此章节将基于上一章节基础之上,引入Soul网关,至于Soul网关是干什么的,怎么做的,我们会在后续章节讲解,1-3章节侧重于搭建应用。 本章节的Soul网关接入,如果你1,2章节都是和我保持一致,那么只需要直接启动Soul网关即可,但是对应的provider,consumer应用是需要额外的代码接入的。 开发环境和第二章保持一致。
524 0
|
消息中间件 算法 网络协议
50-微服务技术栈(高级):分布式协调服务zookeeper源码篇(Leader选举)
前面学习了Zookeeper相关细节,其中对于集群启动而言,很重要的一部分就是Leader选举,接着就开始深入学习Leader选举。
134 0
|
设计模式 运维 Kubernetes
Github上霸榜的微服务笔记终于要开源了!涵盖其所有技术栈
随着云端办公以来,发现微服务越来越重要了。Docker 容器技术和自动化运维等相关技术发展,使微服务变得更容易维护。大家可能都注意到,像阿里、腾讯、字节跳动等大厂的后端岗位明确写出:微服务设计经验优先。如果没有这方面的准备的话,想拿到高薪可不容易。
|
消息中间件 Kubernetes Dubbo
聊聊最新微服务架构技术栈选型
聊聊最新微服务架构技术栈选型