✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab仿真内容点击👇
⛄ 内容介绍
一种基于长短期记忆(LSTM)模型的多标签行业分类方法及装置,其方法包括:采集公司名,公司描述,公司经营范围数据;按类划分测试集,以及对所述采集的数据进行切分词等预处理操作;采用LSTM模型构建多个二分类器对所述预处理后的数据进行分类训练,以训练数据真实标签作为寻优方向,训练出多标签行业分类模型;以精度,召回率和F1值作为评估指标,实现对测试集数据的自动评估,并采集小部分新公司数据抽样进行人工评估,最终训练出精度更高的多标签行业分类模型;利用基于LSTM的多标签行业分类模型自动实现对待分类公司的多个行业标签预测.本发明的实施可大大降低人工标注成本,提高分类精度,且符合大多数公司非单一行业,而具有多个行业属性的情况.
⛄ 部分代码
function Positions=initialization(SearchAgents_no, dim, ub, lb)
%% 边界数目
Boundary_no= size(ub, 2);
%% 变量数目等于1
if Boundary_no == 1
Positions = rand(SearchAgents_no, dim) .* (ub - lb) + lb;
end
%% 如果每个变量有不同的上下界
if Boundary_no > 1
for i = 1 : dim
ub_i = ub(i);
lb_i = lb(i);
Positions(:, i) = rand(SearchAgents_no, 1) .* (ub_i - lb_i) + lb_i;
end
end
⛄ 运行结果
⛄ 参考文献
[1] 段中兴, 温倩, 周孟,等. 基于改进蝙蝠算法优化LSTM网络的短时客流预测.
[2] 刘庆. 基于LSTM模型的汽车配件安全库存量预测研究[D]. 西南交通大学.
[3] 段中兴, 温倩, 周孟,等. 基于改进蝙蝠算法优化LSTM网络的短时客流预测[J]. 铁道科学与工程学报, 2021.