膜拜!华为内部都在强推的783页大数据处理系统:Hadoop源代码pdf

简介: 大数据处理系统:Hadoop源代码情景分析,采用的是Hadoop2.6。如果你有点野心,想对大数据处理系统有比较深入透彻的了解,特别是想有朝一日自己也设计一个这样的系统,甚至自己把它写出来,那么你真应该认真读一下这本文,以及 Hadoop的源代码,看看人家是怎么设计怎么实现的。

前言

大数据处理系统:Hadoop源代码情景分析,采用的是Hadoop2.6。如果你有点野心,想对大数据处理系统有比较深入透彻的了解,特别是想有朝一日自己也设计一个这样的系统,甚至自己把它写出来,那么你真应该认真读一下这本文,以及 Hadoop的源代码,看看人家是怎么设计怎么实现的。

然后,在最后一章,再看看Spark又是什么样的,有些什么改进。你将看到,在一个计算机集群上构筑一个大数据处理系统,哪些成分是必不可少的,哪些方面又是可以改进的,它与操作系统的关系怎样,而作为大规模计算机集群的“操作系统”又可以和应该是什么样的。

不过也尽力把它写成让非计算机专业的读者也能读懂,当然他们的困难会多一些,但也绝非无法理解。正因如此,本文叙述也许显得过于通俗直白,有时候可能还有点啰嗦。

网络异常,图片无法展示
|

学习目录

网络异常,图片无法展示
|

主要内容

全文总共分为20章的内容,因为内容比较多,所以接下来我就给大家做个粗略的介绍,每一节都有更加细化的内容!

第1章大数据与Hadoop,

网络异常,图片无法展示
|

第2章研究方法,我们的目的是要研究 Hadoop的源代码,而研究必须有研究方法。这里所说的研究方法是指如何阅读、分析、理解各种计算机程序源代码的方法和手段。实际上对此并没有一种标准的或者公认的方法,各人所用的方法和手段可能都不一样,这里只是把我所用的方法介绍给读者,以期抛砖引玉

网络异常,图片无法展示
|

第3章Hadoop集群和YARN,虽然 Hadoop也可以在单机上运行,但是这个平台的典型运行场景无疑是在多机的集群(Cluster)上。我们把运行着 Hadoop平台的集群,就Hadoop平台的边界所及,称为“Hadoop集群”。其中的每台机器都成为集群的一个“节点(node)”,节点之间连成一个局域网。这个局域网一般都是交换网,而不是路由网。这就是说,集群中只有交换机(switch),一般是二层交换机,也可能是三层交换机,但是没有普通的路由器,因为那些路由器引入的延迟太大了。不过这也不绝对,有时候可能确实需要将一个集群分处在不同网段中,而通过路由器相连,但是这并不影响 Hadoop的运行(除性能降低之外)。就 Hadoop而言,路由器与交换机在逻辑上是一样的。

网络异常,图片无法展示
|

第4章Hadoop的RPC机制,RPC是“RemoteProcedureCall”即“远地过程调用”的缩写。这个机制的目的,是让一台机器上的程序能像调用本地的“过程”那样来调用别的机器上的某些过程。这里所谓“过程”,在传统的 C程序设计中统称为“函数”,在 Pascal程序设计中既可以是 PROCEDURE 也可以是 FUNCTION,在Java等 OO 程序设计语言中就是 “方 法 (method)”。所 以,Java传 统 的RPC机制称为 RMI,即“远地方法启用(RemoteMethodInvocation)”。

网络异常,图片无法展示
|

第5章Hadoop作业的提交,在计算机上启动运行一个应用,首先要把这个应用作为“作业(Job)”提交给计算机系统。

一般这是通过键入一个命令行或点击某个图标而实现的,操作很简单。但是,如果我们要考察在提交作业时系统内部的流程,那就比较复杂了。学过操作系统的人对单机上的作业提交过程会有比较深入的了解,不过那不是本书所要关注的问题。本书所关注的是,在通常运行于计算机集群的 Hadoop系统上,作业是怎样提交的。

网络异常,图片无法展示
|

第6章作业的调度与指派,

网络异常,图片无法展示
|

第7章NodeManager与任务投运,用户提交的作业为 ResourceManager接受并得到调度运行之后,RM会设法将其投入运行。但是一 个 作 业 (Job 或 App)通常都包含着很多任务,比方说N个MapTask和1个ReduceTask,所以作业的投运终究会分解成许多任务的投运。

网络异常,图片无法展示
|

第8章MRAppMaster与作业投运,

网络异常,图片无法展示
|

第9章YARN子系统的计算框架,Hadoop中 YARN 子系统的使命是为用户提供大数据的计算框架。早期的 Hadoop,甚至早期的 YARN 都只提供一种计算框架,那就是 MapReduce。如前所述,MapReduce是一种极简的,然而在很多情况下颇为有效的计算模型和框架。

但是Hadoop的MapReduce框架要求使用者提供用Java语言编写的 Mapper和 Reducer,而 App本身则虽然简单但也要求用Java编写,这又使有些用户感到有点不便,而且 MapReduce这个模式也过于简单和单调。所以 Hadoop后来有了一些新的发展,除 MapReduce外又提供了称为Chain和Stream的计算框架。一来使用户不必非得用Java编程;二来更允许用户利用 Linux上的 Utility工具软件搭建更像“数据流”的结构。本章介绍 YARN 子系统为用户提供的计算框架,当然主要还是传统的 MapReduce框架。

网络异常,图片无法展示
|

第10章MapReduce框架中的数据流

网络异常,图片无法展示
|

第11章Hadoop的文件系统HDFS

网络异常,图片无法展示
|

第12章HDFS的DataNode

网络异常,图片无法展示
|

第13章DataNode与NameNode的互动,数据节点DataNode在运行中会与三种对端有互动。

第一种是NameNode,如前所述,对于数据块的存储地点,虽然最初是由NameNode分配和指定的,但相关的信息最终来自DataNode的报告。

第二种是用户的App(包括Shell),用户的App可以存在于集群内的任何节点上,不过那是在独立的JVM上,即使与DataNode同在-一个节点上也互相独立;然而真正把数据存储在DataNode上或从DataNode读取数据的却是App(或Shell)。

第三种是集群中别的DataNode,就是说DataNode与DataNode之间也会有通信和互动,这主要来自数据块复份replica的传输和转储。

数据块在HDFS文件系统中的存储是“狡兔三窟”的,一个数据块要分别存储在若干不同的DataNode.上,但是系统并不要求App把--个数据块分别发送给几个DataNode,而只需发送给其中的一个,后面就是DataNode之间的事了。

网络异常,图片无法展示
|

第14章DataNode间的互动

网络异常,图片无法展示
|

第15章HDFS的文件访问

网络异常,图片无法展示
|

第16章Hadoop的容错机制

网络异常,图片无法展示
|

第17章Hadoop的安全机制

网络异常,图片无法展示
|

第18章Hadoop的人机界面,供人们直接使用的系统须提供人机交互的手段,或称“人机界面(UserInterface)”即 UI,更确切地说是“Man-MachineInterface”,使人们得以使用和管理这个系统或平台。比

网络异常,图片无法展示
|

第19章Hadoop的部署和启动,系统的安装部署本来就不是小事,对于大规模的集群就更不用说了。Hadoop 一般都是在集群_上运行,但是要运维人员跑到每一台机器上去部署或启动却是不现实的,得要能在一个集中的控制台节点上完成Hadoop的部署和启动(还有关机)才好,这当然又会使整个过程增加许多技术上的复杂度。既然是在一个集中的控制台节点上部署和启动一个集群,那当然就离不开远程操作,所以Linux的远程操作工具ssh和rsyne就成了整个过程的基石。之所以是ssh和rsync,而不是别的远程操作工具(比方说Telnet),是因为这二者的安全性比较好,通信中采用了较强的加密手段。

网络异常,图片无法展示
|

第20章Spark的优化与改进

近年来, Hadoop与Spark 之间就像展开了一场你追我赶的竞赛。时至今日,Hadoop和Spark已经成为大数据处理平台的两个“de facto standard”,即“事实标准”。

不过Spark之于Hadoop也并非完全是对立的两种平台或产品,在很大程度上倒是对于Hadoop的补充,而并不完全是作为对于Hadoop的替代。

事实上,Spark虽然也能以“Stand alone"模式独立存在和运行,但是更多地还是利用YARN,在YARN框架上运行。而且Spark也不提供自己的文件系统,大多只是直接利用HDFS。虽然Spark并不要求必须使用HDFS,但是在大规模集群的条件下要实现“数据在哪里,计算就去哪里”这个原则,而且还要容错,实际上也没有太多的选择。

所以从功能上看,Spark的作用只是相当于一个更好的YARN子系统。

Hadoop的不足是明摆着的,总而言之,一是不够灵活、比较死板,就是专门针对MapReduce;二是性能不够好;三是使用不够方便,动不动就得写个Java程序。

那么Spark对此又有些什么样的改进呢?下面就作些介绍和评述,同时也对Hadoop和Spark做个粗泛的比较研究。

网络异常,图片无法展示
|

这份【 大数据处理系统: Hadoop源代码情景分析】共有783页,已经整理打包好,需要完整版内容的朋友,可以点击此处来获取就可以了!

相关文章
|
10天前
|
机器学习/深度学习 存储 分布式计算
ODPS驱动电商仓储革命:动态需求预测系统的落地实践
本方案基于ODPS构建“预测-仿真-决策”闭环系统,解决传统仓储中滞销积压与爆款缺货问题。通过动态特征工程、时空融合模型与库存仿真引擎,实现库存周转天数下降42%,缺货率下降65%,年损减少5000万以上,显著提升运营效率与GMV。
47 1
|
5月前
|
传感器 监控 大数据
指挥学校大数据系统解决方案
本系统集成九大核心平台,包括中心化指挥、数据处理、学生信息、反校园欺凌大数据、智慧课堂、学生行为综合、数据交换及其他外部系统云平台。通过这些平台,系统实现对学生行为、课堂表现、校园安全等多维度的实时监控与数据分析,为教育管理、执法机关、心理辅导等提供强有力的数据支持。特别地,反校园欺凌平台利用多种传感器和智能设备,确保及时发现并处理校园霸凌事件,保障学生权益。同时,系统还涵盖超市、食堂、图书馆、消防安全等辅助云平台,全面提升校园智能化管理水平。
|
6月前
|
传感器 人工智能 大数据
高科技生命体征探测器、情绪感受器以及传感器背后的大数据平台在健康监测、生命体征检测领域的设想与系统构建
本系统由健康传感器、大数据云平台和脑机接口设备组成。传感器内置生命体征感应器、全球无线定位、人脸识别摄像头等,搜集超出现有科学认知的生命体征信息。云平台整合大数据、云计算与AI,处理并传输数据至接收者大脑芯片,实现实时健康监测。脑机接口设备通过先进通讯技术,实现对健康信息的实时感知与反馈,确保身份验证与数据安全。
|
4月前
|
SQL 分布式计算 Hadoop
Hadoop生态系统:从小白到老司机的入门指南
Hadoop生态系统:从小白到老司机的入门指南
222 13
|
11月前
|
数据采集 存储 数据处理
数据平台问题之知识管理系统的效果如何评估
数据平台问题之知识管理系统的效果如何评估
136 2
|
11月前
|
分布式计算 DataWorks 关系型数据库
MaxCompute 生态系统中的数据集成工具
【8月更文第31天】在大数据时代,数据集成对于构建高效的数据处理流水线至关重要。阿里云的 MaxCompute 是一个用于处理大规模数据集的服务平台,它提供了强大的计算能力和丰富的生态系统工具来帮助用户管理和处理数据。本文将详细介绍如何使用 DataWorks 这样的工具将 MaxCompute 整合到整个数据处理流程中,以便更有效地管理数据生命周期。
313 0
|
6月前
|
存储 分布式计算 Hadoop
基于Java的Hadoop文件处理系统:高效分布式数据解析与存储
本文介绍了如何借鉴Hadoop的设计思想,使用Java实现其核心功能MapReduce,解决海量数据处理问题。通过类比图书馆管理系统,详细解释了Hadoop的两大组件:HDFS(分布式文件系统)和MapReduce(分布式计算模型)。具体实现了单词统计任务,并扩展支持CSV和JSON格式的数据解析。为了提升性能,引入了Combiner减少中间数据传输,以及自定义Partitioner解决数据倾斜问题。最后总结了Hadoop在大数据处理中的重要性,鼓励Java开发者学习Hadoop以拓展技术边界。
210 7
|
7月前
|
存储 分布式计算 大数据
Flume+Hadoop:打造你的大数据处理流水线
本文介绍了如何使用Apache Flume采集日志数据并上传至Hadoop分布式文件系统(HDFS)。Flume是一个高可用、可靠的分布式系统,适用于大规模日志数据的采集和传输。文章详细描述了Flume的安装、配置及启动过程,并通过具体示例展示了如何将本地日志数据实时传输到HDFS中。同时,还提供了验证步骤,确保数据成功上传。最后,补充说明了使用文件模式作为channel以避免数据丢失的方法。
349 4
|
8月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第27天】在大数据时代,数据湖技术凭借其灵活性和成本效益成为企业存储和分析大规模异构数据的首选。Hadoop和Spark作为数据湖技术的核心组件,通过HDFS存储数据和Spark进行高效计算,实现了数据处理的优化。本文探讨了Hadoop与Spark的最佳实践,包括数据存储、处理、安全和可视化等方面,展示了它们在实际应用中的协同效应。
395 2
|
8月前
|
存储 分布式计算 Hadoop
数据湖技术:Hadoop与Spark在大数据处理中的协同作用
【10月更文挑战第26天】本文详细探讨了Hadoop与Spark在大数据处理中的协同作用,通过具体案例展示了两者的最佳实践。Hadoop的HDFS和MapReduce负责数据存储和预处理,确保高可靠性和容错性;Spark则凭借其高性能和丰富的API,进行深度分析和机器学习,实现高效的批处理和实时处理。
354 1

热门文章

最新文章