python多线程并发采集黄金走势数据

简介: python使用aiohttp 通过设置代理IP,实现多线程并发采集

最近随着硅谷银行破产、瑞信暴雷引发全球金融风险担忧加剧,叠加美联储加息预期放缓,国际金价逼近2000美元/盎司关口。据中国基金报报道,在经历近一个月的震荡下跌后,本周现货黄金价格持续走高,现货黄金收报1989美元/盎司,涨幅3.64%,且已突破2月初的金价高位,创下近11个月以来新高,其中有多重因素影响,不过欧美银行业危机引发市场避险情绪升温是主要推动因素。
QQ图片20230321151421.png

最近也有些关于黄金相关分析的项目需要用到金交所数据,这里直接获取权威的交易数据,上海黄金交易所官网就有历年的交易数据。直接用熟悉的Python写个爬虫自动获取。
首先进行简单的网站分析,找到上海黄金交易所每日行情页列表(首页 > 数据资讯 > 历史行情数据 > 每日行情。分析发现网站还存在反爬机制,对访问的IP的有爬频率限制。所以爬虫程序里面直接python使用aiohttp 通过设置代理IP,多线程并发采集,这样能更高效的获取数据。代理IP最好是选择付费的优质代理服务商,不管是代理的连通率,延迟,速度,带宽都有保证。实现代码如下:

import asyncio
import aiohttp
from aiohttp_socks import ProxyConnector
from bs4 import BeautifulSoup

# 定义目标网站和代理服务器的参数
url = "https://www.sge.com.cn/sjzx/mrhqsj"
proxy = "socks5://16yun:16ip@www.16yun.cn:11111"

# 定义异步函数来发送GET请求,并使用代理服务器来连接目标网站
async def fetch(session, url):
    try:
        async with session.get(url) as response:
            # 检查响应状态码是否为200,否则抛出异常
            if response.status != 200:
                raise Exception(f"Bad status code: {response.status}")
            # 返回响应内容的文本格式
            return await response.text()
    except Exception as e:
        # 打印异常信息,并返回None
        print(e)
        return None

# 定义异步函数来处理响应结果,并解析HTML内容
async def parse(html):
    # 如果响应结果不为空,则进行解析操作
    if html is not None:
        # 使用bs4库来创建BeautifulSoup对象,并指定解析器为html.parser
        soup = BeautifulSoup(html, "html.parser")
        # 提取网页中的标题标签,并打印其文本内容
        title = soup.find("title")
        print(title.text)
    else:
        # 否则打印None表示无效结果
        print(None)

# 定义异步函数来统计成功次数,并打印结果
async def count(results):
    # 初始化成功次数为0
    success = 0
    # 遍历所有的结果,如果不为空,则增加成功次数,否则跳过
    for result in results:
        if result is not None:
            success += 1
    # 打印总共的请求数和成功次数    
    print(f"Total requests: {len(results)}")
    print(f"Success requests: {success}")

# 定义异步主函数来创建并运行多个协程任务,并控制并发数量和超时时间等参数    
async def main():
    # 创建一个aiohttp_socks.ProxyConnector对象,用来设置代理服务器的参数    
    connector = ProxyConnector.from_url(proxy)
    # 创建一个aiohttp.ClientSession对象,用来发送HTTP请求,并传入connector参数    
    async with aiohttp.ClientSession(connector=connector) as session:
        # 创建一个空列表,用来存储所有的协程任务        
        tasks = []
        # 循环10000次,每次创建一个fetch函数的协程任务,并添加到列表中        
        for i in range(10000):
            task = asyncio.create_task(fetch(session, url))
            tasks.append(task)
        
        # 使用asyncio.gather函数来收集并执行所有的协程任务,并返回一个包含所有结果的列表        
        results = await asyncio.gather(*tasks)
        
        # 创建一个空列表,用来存储所有的解析任务        
        parse_tasks = []
        
         for result in results:
             parse_task = asyncio.create_task(parse(result))
             parse_tasks.append(parse_task)
             
         await asyncio.gather(*parse_tasks)   
         
         await count(results)

# 在程序入口处调用异步主函数,并启动事件循环         
if __name__ == "__main__":
     asyncio.run(main())
相关文章
|
9天前
|
安全 Java 开发者
Java 多线程并发控制:深入理解与实战应用
《Java多线程并发控制:深入理解与实战应用》一书详细解析了Java多线程编程的核心概念、并发控制技术及其实战技巧,适合Java开发者深入学习和实践参考。
|
15天前
|
并行计算 数据处理 调度
Python中的并发编程:探索多线程与多进程的奥秘####
本文深入探讨了Python中并发编程的两种主要方式——多线程与多进程,通过对比分析它们的工作原理、适用场景及性能差异,揭示了在不同应用需求下如何合理选择并发模型。文章首先简述了并发编程的基本概念,随后详细阐述了Python中多线程与多进程的实现机制,包括GIL(全局解释器锁)对多线程的影响以及多进程的独立内存空间特性。最后,通过实例演示了如何在Python项目中有效利用多线程和多进程提升程序性能。 ####
|
18天前
|
API 数据处理 Python
探秘Python并发新世界:asyncio库,让你的代码并发更优雅!
在Python编程中,随着网络应用和数据处理需求的增长,并发编程变得愈发重要。asyncio库作为Python 3.4及以上版本的标准库,以其简洁的API和强大的异步编程能力,成为提升性能和优化资源利用的关键工具。本文介绍了asyncio的基本概念、异步函数的定义与使用、并发控制和资源管理等核心功能,通过具体示例展示了如何高效地编写并发代码。
26 2
|
21天前
|
存储 设计模式 分布式计算
Java中的多线程编程:并发与并行的深度解析####
在当今软件开发领域,多线程编程已成为提升应用性能、响应速度及资源利用率的关键手段之一。本文将深入探讨Java平台上的多线程机制,从基础概念到高级应用,全面解析并发与并行编程的核心理念、实现方式及其在实际项目中的应用策略。不同于常规摘要的简洁概述,本文旨在通过详尽的技术剖析,为读者构建一个系统化的多线程知识框架,辅以生动实例,让抽象概念具体化,复杂问题简单化。 ####
|
27天前
|
Java Unix 调度
python多线程!
本文介绍了线程的基本概念、多线程技术、线程的创建与管理、线程间的通信与同步机制,以及线程池和队列模块的使用。文章详细讲解了如何使用 `_thread` 和 `threading` 模块创建和管理线程,介绍了线程锁 `Lock` 的作用和使用方法,解决了多线程环境下的数据共享问题。此外,还介绍了 `Timer` 定时器和 `ThreadPoolExecutor` 线程池的使用,最后通过一个具体的案例展示了如何使用多线程爬取电影票房数据。文章还对比了进程和线程的优缺点,并讨论了计算密集型和IO密集型任务的适用场景。
48 4
|
27天前
|
数据库 开发者 Python
“Python异步编程革命:如何从编程新手蜕变为并发大师,掌握未来技术的制胜法宝”
【10月更文挑战第25天】介绍了Python异步编程的基础和高级技巧。文章从同步与异步编程的区别入手,逐步讲解了如何使用`asyncio`库和`async`/`await`关键字进行异步编程。通过对比传统多线程,展示了异步编程在I/O密集型任务中的优势,并提供了最佳实践建议。
18 1
|
10天前
|
数据采集 Java Python
爬取小说资源的Python实践:从单线程到多线程的效率飞跃
本文介绍了一种使用Python从笔趣阁网站爬取小说内容的方法,并通过引入多线程技术大幅提高了下载效率。文章首先概述了环境准备,包括所需安装的库,然后详细描述了爬虫程序的设计与实现过程,包括发送HTTP请求、解析HTML文档、提取章节链接及多线程下载等步骤。最后,强调了性能优化的重要性,并提醒读者遵守相关法律法规。
42 0
|
2月前
|
存储 消息中间件 资源调度
C++ 多线程之初识多线程
这篇文章介绍了C++多线程的基本概念,包括进程和线程的定义、并发的实现方式,以及如何在C++中创建和管理线程,包括使用`std::thread`库、线程的join和detach方法,并通过示例代码展示了如何创建和使用多线程。
48 1
C++ 多线程之初识多线程
|
2月前
|
Java 开发者
在Java多线程编程中,创建线程的方法有两种:继承Thread类和实现Runnable接口
【10月更文挑战第20天】在Java多线程编程中,创建线程的方法有两种:继承Thread类和实现Runnable接口。本文揭示了这两种方式的微妙差异和潜在陷阱,帮助你更好地理解和选择适合项目需求的线程创建方式。
20 3
|
2月前
|
Java 开发者
在Java多线程编程中,选择合适的线程创建方法至关重要
【10月更文挑战第20天】在Java多线程编程中,选择合适的线程创建方法至关重要。本文通过案例分析,探讨了继承Thread类和实现Runnable接口两种方法的优缺点及适用场景,帮助开发者做出明智的选择。
19 2
下一篇
无影云桌面