能快速构建和定制网络拓扑图的WPF开源项目-NodeNetwork

简介: 在现代软件开发中,数据可视化和可交互性越来越受到关注。为了实现这一点,通常需要使用各种图表、表格、网络拓扑图等控件。NodeNetwork就是一种这样的自定义方式,它是一个基于C# WPF的开源项目,可以帮助我们快速构建和定制网络拓扑图。

大家好,我是沙漠尽头的狼,今天介绍一个WPF开源项目-NodeNetwork,它可以帮助我们快速构建和定制网络拓扑图。

一、前言

在现代软件开发中,数据可视化和可交互性越来越受到关注。为了实现这一点,通常需要使用各种图表、表格、网络拓扑图等控件。然而,对于某些特殊的场景,这些控件可能无法满足需求,此时我们需要一种自定义的方式来展示和处理数据。NodeNetwork就是一种这样的自定义方式,它是一个基于C# WPF的开源项目,可以帮助我们快速构建和定制网络拓扑图。

NodeNetwork的代码托管在GitHub上,是由荷兰的一位开发者Wouterdek所创建和维护的。在本文中,我们将对NodeNetwork进行介绍和分析,希望读者能够通过本文了解到NodeNetwork的核心概念、应用场景和使用方法,同时也能够掌握一些开发NodeNetwork的技巧和经验。

仓库地址:https://github.com/Wouterdek/NodeNetwork

仓库截图:

仓库截图

仓库源码结构:

仓库源码结构

二、示例

1. 计算器示例

此示例允许用户使用节点编辑器创建数学表达式。 修改节点时,将自动计算和更新结果值。 此应用程序包含节点验证,自定义节点子类,值输入/输出,自定义输入编辑器,节点列表,...

下面是计算器示例[1]应用程序的演示:

计算器示例应用程序的演示

2. 代码生成器示例

在此示例中,用户可以创建 LUA 代码。与虚幻引擎中的蓝图类似,编辑器具有执行流程和数据流。 自定义输入/输出端口、节点编辑器提供了更直观的体验。

下面是代码生成器[2]应用程序的截图:

代码生成器应用程序的截图

3. 着色器编辑器示例

此库更实用的示例可能是着色器编辑器。

下面是使用 NodeNetwork 制作的着色器编辑器[3]示例的演示:

着色器编辑器示例的演示

这些示例应用程序可在此处下载[4],其源代码包含在存储库中,库的二进制版本在 NuGet 上可用。

三、特征

  1. 专为 .NET Framework 4.7.2 和 .NET Core 3.1 或更高版本构建。
  2. 开放、宽松的许可证-Apache-2.0 license[5]
  3. 使用现代反应式 MVVM 代码构建的交互式、可靠的控件。
  4. 顺滑的平移、缩放控件。
  5. 自动布局系统。
  6. 高度可定制,但默认情况下易于使用。
  7. 强大的节点和连接验证支持。
  8. 大量的单元测试提供支持。
  9. ...

四、NodeNetwork的核心概念

以下内容可参考仓库组件说明[6]页。

1. 节点(Node)

节点是NodeNetwork中的最基本元素,可以表示任何一个数据源或处理单元。每个节点可以包含一个或多个输入端口和输出端口,分别表示节点接收和输出的数据。NodeNetwork中内置了几种常用的节点类型,如常量节点、计算节点、输入输出节点等,同时也支持自定义节点类型。

2. 连接(Connection)

连接是NodeNetwork中的一个核心概念,用于表示节点之间的数据传输关系。每个连接都有一个源端口和目标端口,源端口表示数据的来源,目标端口表示数据的目标。连接还可以携带一些元数据(metadata),用于描述连接的一些附加信息,如颜色、线宽等。

3. 端口(Port)

端口是节点的输入或输出端点,用于与其他节点进行连接。每个端口都有一个类型,表示该端口所能接收或输出的数据类型。端口还可以有一些其他属性,如标签、描述等,用于描述端口的功能和作用。

4. 图形界面(GUI)

NodeNetwork是基于WPF框架实现的,因此它具有一套强大的图形界面(GUI)系统。在NodeNetwork中,每个节点和连接都可以显示为一个图形化的元素,用户可以通过拖拽、缩放等方式对这些元素进行操作。

5. 布局(Layout)

布局是NodeNetwork的另一个重要概念,用于控制节点和连接的位置和大小。NodeNetwork中提供了多种不同的布局方式,如自由布局、栅格布局、力导向布局等。用户可以根据具体的需求选择不同的布局方式,并且可以通过代码或图形界面进行布局的定制和调整。

6. 序列化和反序列化(Serialization and Deserialization)

在实际的应用中,我们需要将节点和连接保存到文件或数据库中,或者从文件或数据库中读取节点和连接。为了实现这一点,NodeNetwork提供了序列化和反序列化功能。序列化是将节点和连接转换成一个数据流的过程,反序列化则是将数据流转换成节点和连接的过程。NodeNetwork支持多种不同的序列化格式,如XML、JSON、二进制等,用户可以根据具体需求选择不同的格式。

五、NodeNetwork的应用场景

NodeNetwork具有广泛的应用场景,下面介绍其中的几个:

1. 数据处理和分析

NodeNetwork可以帮助我们快速构建数据处理和分析的工具。例如,我们可以创建一个图形化的工作流,将不同的数据处理节点连接起来,从而实现数据的预处理、转换和分析。

2. 图形化编辑器

NodeNetwork可以帮助我们快速构建图形化的编辑器。例如,我们可以创建一个图形化的界面,用于编辑和配置某些参数或选项,这些参数或选项可以通过节点和连接的方式进行交互和传递。

3. 可视化和交互式展示

NodeNetwork可以帮助我们快速构建可视化和交互式的展示工具。例如,我们可以创建一个图形化的网络拓扑图,用于展示某些设备或系统的连接关系和状态。用户可以通过节点和连接的方式进行交互和控制,例如添加、删除、修改节点和连接等。

六、NodeNetwork的使用方法

NodeNetwork的使用方法非常简单,下面介绍其中的几个步骤(参考不到30行代码的Hello world[7])。

首先,使用 Dotnet 8[8]创建WPF项目,项目命名为NodeNetworkTest,您可以使用 .NET Framework 4.7.2 以上或 .NET CORE 3.x 以上,站长使用 .NET 8只是8预览版2刚出来试试而已。

1. 安装NodeNetwork

NodeNetwork可以通过NuGet包管理器进行安装。在Visual Studio中,打开“包管理器控制台”,输入以下命令即可安装NodeNetwork:

Install-Package NodeNetwork

2. 注册NodeNetwork视图

MVVM在整个NodeNetwork库中都在贯彻使用。有关MVVM的介绍请点击这里[9]查看。使用库中的元素,您需要创建合适的视图,并为其提供相应的ViewModel实例。

在使用库之前,请在App.xaml.cs文件的OnStartup方法内使用NNViewRegistrar.RegisterSplat()方法将NodeNetwork的视图和相应的ViewModel进行注册关联。

using System.Windows;
using NodeNetwork;

namespaceNodeNetworkTest;

publicpartialclassApp : Application
{
   protectedoverridevoidOnStartup(StartupEventArgs e)
   {
       base.OnStartup(e);
       NNViewRegistrar.RegisterSplat();
   }
}

3. 创建视图

打开MainWindow.xaml,添加NodeNetwork命名空间xmlns:nodenetwork="clr-namespace:NodeNetwork.Views;assembly=NodeNetwork",并添加NetworkView视图<nodenetwork:NetworkView x:Name="networkView" />,NetworkView表示整个网络拓扑图:

<Windowx:Class="NodeNetworkTest.MainWindow"
       xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
       xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
       xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
       xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
       xmlns:nodenetwork="clr-namespace:NodeNetwork.Views;assembly=NodeNetwork"
       mc:Ignorable="d"
       Title="MainWindow"Height="450"Width="800">

   <Grid>
       <nodenetwork:NetworkViewx:Name="networkView" />
   </Grid>
</Window>

4. 创建节点和连接

在NodeNetwork中,创建节点和连接非常简单。首先,我们需要创建NetworkViewModel,它是NetworkView视图的ViewModel,可以通过以下代码创建:

var network = new NetworkViewModel();
networkView.ViewModel = network;

然后通过以下代码创建第一个节点:

var node1 = new NodeViewModel();
node1.Name = "节点1";
network.Nodes.Add(node1);

并给第一个节点创建一个输入端口:

var node1Input = new NodeInputViewModel();
node1Input.Name = "节点1输入";
node1.Inputs.Add(node1Input);

创建第二个节点,并以同样的方式给此节点创建一个输出端口:

var node2 = new NodeViewModel();
node2.Name = "节点2";
network.Nodes.Add(node2);

var node2Output = new NodeOutputViewModel();
node2Output.Name = "节点2输出";
node2.Outputs.Add(node2Output);

最后,我们可以通过以下代码将节点1的输入端口和节点2的输出端口连接到一起:

var connection = new ConnectionViewModel(network, node1Input, node2Output);
network.Connections.Add(connection);

完整代码如下:

using DynamicData;
using NodeNetwork.ViewModels;
using System.Windows;

namespaceNodeNetworkTest;

publicpartialclassMainWindow : Window
{
   publicMainWindow()
   {
       InitializeComponent();

       // 创建NetworkView视图的ViewModel实例
       var network = new NetworkViewModel();

       // 给视图(networkView)赋值viewmodel(network)
       networkView.ViewModel = network;

       // 创建第一个节点ViewModel,设置它的名称并将此节点加入到network
       var node1 = new NodeViewModel();
       node1.Name = "节点1";
       network.Nodes.Add(node1);

       // 创建第一个节点的输入端口ViewModel,设置它的名称并加入第一个节点
       var node1Input = new NodeInputViewModel();
       node1Input.Name = "节点1输入";
       node1.Inputs.Add(node1Input);

       // 创建第二个节点ViewModel,设置它的名称并将此节点加入到network, 并以同样的方式给此节点添加一个输出Create the second node viewmodel, set its name, add it to the network and add an output in a similar fashion.
       var node2 = new NodeViewModel();
       node2.Name = "节点2";
       network.Nodes.Add(node2);

       var node2Output = new NodeOutputViewModel();
       node2Output.Name = "节点2输出";
       node2.Outputs.Add(node2Output);

       // 将节点1的输入端口和节点2的输出端口连接到一起
       var connection = new ConnectionViewModel(network, node1Input, node2Output);
       network.Connections.Add(connection);
   }
}

运行程序看效果:

示例代码已经全部给了,你也可以戳这[10]克隆。

5. 布局

在NodeNetwork中,布局非常灵活和自由。我们可以通过代码或图形界面进行布局。例如,我们可以通过以下代码将节点放置在指定的位置:

node.Position = new Point(100, 100);

通过以下代码调整整个网络拓扑图的布局(参考布局文档[11]):

ForceDirectedLayouter layouter = new ForceDirectedLayouter();
var config = new Configuration
{
   Network = yourNetwork,
};
layouter.Layout(config, 10000);

6. 序列化和反序列化

在NodeNetwork中,序列化和反序列化非常简单。我们可以通过以下代码将节点和连接序列化为XML格式:

var serializer = new XmlSerializer(typeof(NodeNetworkViewModel));
var writer = new StringWriter();
serializer.Serialize(writer, nodeNetwork);

然后,我们可以将XML字符串保存到文件或数据库中。反序列化也非常简单。我们可以通过以下代码从XML字符串中反序列化节点和连接:

var serializer = new XmlSerializer(typeof(NodeNetworkViewModel));
var reader = new StringReader(xmlString);
var nodeNetwork = (NodeNetworkViewModel)serializer.Deserialize(reader);

七、总结

NodeNetwork是一个非常实用和灵活的C# WPF开源项目,它可以帮助我们快速构建图形化的网络拓扑图,实现节点和连接的交互和传递。NodeNetwork提供了丰富的功能和特性,例如节点和连接的自定义、布局和调整、序列化和反序列化等,可以满足各种不同的应用需求。NodeNetwork的应用场景非常广泛,例如数据处理和分析、图形化编辑器、可视化和交互式展示等。NodeNetwork的使用方法非常简单,我们只需要安装NodeNetwork、创建节点和连接、布局和调整、序列化和反序列化即可。

  • 入门指南

有关使用此库的简单快速入门指南,请参阅此页面[12]上的说明书章节。 该文档包括设置信息、说明书章节、示例和 API 参考。

  • 许可证

该库在 Apache 许可证 2.0 下获得许可。(见 choosealicense.com/licenses/apache-2.0[13] 简要介绍)此许可证的副本包含在 LICENSE 下的存储库中。

  • 文档

文档可在此处[14]获得。如果要对文档进行更改,可以通过向 gh-pages 分支[15]发出拉取请求来实现。

  • 贡献

这些操作在 GitHub 页面上非常受欢迎:错误报告、补丁、功能请求、拉取请求...

  • 微信技术交流群:添加微信(dotnet9com)备注“入群”
  • QQ技术交流群:771992300。

参考资料

[1]

计算器示例: https://github.com/Wouterdek/NodeNetwork/tree/master/ExampleCalculatorApp

[2]

代码生成器: https://github.com/Wouterdek/NodeNetwork/tree/master/ExampleCodeGenApp

[3]

着色器编辑器: https://github.com/Wouterdek/NodeNetwork/tree/master/ExampleShaderEditorApp

[4]

下载: https://github.com/Wouterdek/NodeNetwork/releases

[5]

Apache-2.0 license: https://github.com/Wouterdek/NodeNetwork/blob/master/LICENSE

[6]

组件说明: https://wouterdek.me/NodeNetwork/components

[7]

不到30行代码的Hello world: https://wouterdek.me/NodeNetwork/cookbook/hello_world

[8]

Dotnet 8: https://dotnet.microsoft.com/zh-cn/download/dotnet/8.0

[9]

这里: https://www.codeproject.com/Articles/100175/Model-View-ViewModel-MVVM-Explained

[10]

戳这: https://github.com/dotnet9/TerminalMACS.ManagerForWPF/tree/master/src/Demo/NodeNetworkTest

[11]

布局文档: https://wouterdek.me/NodeNetwork/cookbook/layout

[12]

此页面: https://wouterdek.github.io/NodeNetwork/doc

[13]

choosealicense.com/licenses/apache-2.0: https://choosealicense.com/licenses/apache-2.0

[14]

此处: https://wouterdek.github.io/NodeNetwork/doc

[15]

gh-pages 分支: https://github.com/Wouterdek/NodeNetwork/tree/gh-pages

相关文章
|
22天前
|
机器学习/深度学习 算法 TensorFlow
深度学习基础:神经网络原理与构建
**摘要:** 本文介绍了深度学习中的神经网络基础,包括神经元模型、前向传播和反向传播。通过TensorFlow的Keras API,展示了如何构建并训练一个简单的神经网络,以对鸢尾花数据集进行分类。从数据预处理到模型构建、训练和评估,文章详细阐述了深度学习的基本流程,为读者提供了一个深度学习入门的起点。虽然深度学习领域广阔,涉及更多复杂技术和网络结构,但本文为后续学习奠定了基础。
48 5
|
11天前
|
供应链 安全 区块链
区块链模块化:构建灵活、可扩展的未来网络
**区块链模块化**拆分系统为独立模块,提升**可扩展性**和**安全性**,增强**灵活性**,适应不同场景需求,如跨链互操作、行业定制和公共服务。模块化设计促进系统**定制化**,支持快速迭代,是区块链技术发展和创新的关键趋势。
|
12天前
|
机器学习/深度学习 PyTorch 算法框架/工具
RNN、LSTM、GRU神经网络构建人名分类器(三)
这个文本描述了一个使用RNN(循环神经网络)、LSTM(长短期记忆网络)和GRU(门控循环单元)构建的人名分类器的案例。案例的主要目的是通过输入一个人名来预测它最可能属于哪个国家。这个任务在国际化的公司中很重要,因为可以自动为用户注册时提供相应的国家或地区选项。
|
12天前
|
机器学习/深度学习 数据采集
RNN、LSTM、GRU神经网络构建人名分类器(一)
这个文本描述了一个使用RNN(循环神经网络)、LSTM(长短期记忆网络)和GRU(门控循环单元)构建的人名分类器的案例。案例的主要目的是通过输入一个人名来预测它最可能属于哪个国家。这个任务在国际化的公司中很重要,因为可以自动为用户注册时提供相应的国家或地区选项。
|
22天前
|
机器学习/深度学习 人工智能 安全
网络安全基础:防御是最佳进攻——构建坚实的网络安全防线
【6月更文挑战第12天】网络安全至关重要,防御是最佳进攻。本文探讨基础概念、关键策略及未来趋势。防火墙、入侵检测、加密技术、身份认证、访问控制、漏洞管理是防御关键。未来,人工智能、机器学习将增强威胁防御,零信任架构普及,隐私保护和数据安全成为焦点。构建坚实防线,持续学习改进,共同应对网络安全挑战。
|
22天前
|
存储 SQL 安全
构建数字世界的堡垒:网络安全与信息安全探究
在当今数字化时代,网络安全与信息安全已成为不可忽视的重要议题。本文从网络安全漏洞、加密技术以及安全意识等方面展开探讨,旨在为读者提供对这一领域的深入了解和实用知识。
19 2
|
10天前
|
存储 安全 网络安全
云计算与网络安全:构建安全可信的数字世界
随着云计算技术的快速发展,网络安全问题日益突出。本文将深入探讨云服务、网络安全和信息安全等技术领域,旨在为构建安全可信的数字世界提供一些思路和解决方案。
11 0
|
10天前
|
供应链 安全 区块链
区块链模块化:构建灵活、可扩展的未来网络
**区块链模块化**通过拆分系统为独立模块,如执行、结算、共识和数据层,提升**可扩展性**、**安全性和灵活性**。模块化允许定制化解决方案,适用于跨链互操作、行业特定需求及公共服务,如电子投票和版权保护。此方法降低耦合,增强安全性,为开发者创造更多创新机会,驱动区块链技术的未来发展方向。
|
2月前
|
JSON Android开发 开发者
构建高效Android应用:采用Kotlin协程优化网络请求
【5月更文挑战第31天】 在移动开发领域,尤其是针对Android平台,网络请求的管理和性能优化一直是开发者关注的焦点。随着Kotlin语言的普及,其提供的协程特性为异步编程提供了全新的解决方案。本文将深入探讨如何利用Kotlin协程来优化Android应用中的网络请求,从而提升应用的响应速度和用户体验。我们将通过具体实例分析协程与传统异步处理方式的差异,并展示如何在现有项目中集成协程进行网络请求优化。
|
2月前
|
人工智能 自然语言处理 安全
构建未来:AI驱动的自适应网络安全防御系统提升软件测试效率:自动化与持续集成的实践之路
【5月更文挑战第30天】 在数字化时代,网络安全已成为维护信息完整性、保障用户隐私和企业持续运营的关键。传统的安全防御手段,如防火墙和入侵检测系统,面对日益复杂的网络攻击已显得力不从心。本文提出了一种基于人工智能(AI)技术的自适应网络安全防御系统,该系统能够实时分析网络流量,自动识别潜在威胁,并动态调整防御策略以应对未知攻击。通过深度学习算法和自然语言处理技术的结合,系统不仅能够提高检测速度和准确性,还能自主学习和适应新型攻击模式,从而显著提升网络安全防御的效率和智能化水平。 【5月更文挑战第30天】 在快速迭代的软件开发周期中,传统的手动测试方法已不再适应现代高效交付的要求。本文探讨了如