m基于GRNN广义回归神经网络和HOG特征提取的人体姿态检测识别matlab仿真,样本集为TOF深度图

本文涉及的产品
视觉智能开放平台,视频资源包5000点
视觉智能开放平台,图像资源包5000点
视觉智能开放平台,分割抠图1万点
简介: m基于GRNN广义回归神经网络和HOG特征提取的人体姿态检测识别matlab仿真,样本集为TOF深度图

1.算法描述

    GRNN建立在非参数核回归基础上,以样本数据为后验条件,通过执行诸如Parzen非参数估计,从观测样本里求得自变量和因变量之间的联结概率密度函数之后,直接计算出因变量对自变量的回归值。GRNN不需要设定模型的形式,但是其隐回归单元的核函数中有光滑因子,它们的取对网络有很大影响,需优化取值。GRNNb论具有良好的函数逼近性能,而且因为其网络训练更为方便,因此,GRNN在信号过程、结构分析、控制决策系统、金融领域、生物工程领域等各个科学和工程领域得到了广泛的应用。

    广义回归神经网络的理论基础是非线性核回归分析,非独立变量y相对于独立变量x的回归分析实际上是计算具有最大概率值的y。设随机变量x和y的联合概率密度函数为f (x ,y),已知x的观测值为X,则y相对于X的回归,即条件均值为:

image.png

对于未知的概率密度函数f (x, y),可由x和y的观测样本经非参数估计得:

image.png
image.png

   GRNN通常被用来进行函数逼近。它具有一个径向基隐含层和一个特殊的线性层。第一层和第二层的神经元数目都与输入的样本向量对的数目相等。GRNN结构如图所示,整个网络包括四层神经元:输入层、模式层、求和层与输出层。 

image.png

    输入层的神经元数目与学习样本中输入向量的维数m相等,每个神经元都是一个简单的分布单元,这些神经元直接将输入变量传递到隐含层中。  

   方向梯度直方图,也称为HOG,是一种特征描述符,类似于Canny边缘检测器。它用于计算机视觉和图像处理中的目标检测。

   该技术统计图像局部区域中梯度方向的出现次数。该方法类似于边缘方向直方图和尺度不变特征变换(SIFT)。

   HOG描述符关注对象的结构或形状。它比任何边缘描述符都好,因为它使用梯度的大小和角度来计算特征。对于图像区域,它使用梯度的大小和方向生成直方图。

2.仿真效果预览
matlab2022a仿真结果如下:

   这里,通过TOF深度图拍摄相机获得人体不同动作姿态的深度图,其分辨率为1024*768,然后通过MATLAB软件设计本文所提出的动作姿态识别算法,通过该算法对TOF深度图进行识别,最后获得识别率。

1). TOF深度图的采集;

    通过实验室的TOF深度图拍摄相机对不同人体动作姿态进行拍摄,获得一组动作姿态的连续图像序列。

2). TOF深度图的预处理;

    对TOF深度图进行预处理,预处理主要通过MATLAB编程实现图像的预处理算法,主要包括图像灰度化,图像滤波去噪以及目标的提取等操作。

3). 特征数据获取;

    对步骤2中获得的目标图像进行特征提取,将测试图像的特征数据随机分为两组,将一种一部分作为训练数据,另外一部分作为测试数据。

4). 数据训练;

    通过训练算法对特征数据进行训练,获得识别模型。

5). 对未知数据的测试和识别;

image.png
image.png
image.png
image.png

3.MATLAB核心程序

    %第一步由于采集到的深度图有的地方的深度值为零,首先用最邻近差值算法将为零的深度值用其周围的点代替
    I2 = func_nearest_Interpolation(I1);
    subplot(222);
    imshow(uint8(I2));
    title('最邻近差值图像');
 
    %第二步:用中值滤波算法对上一步骤获得的图像进行处理,去噪声;
    L = 5;
    I3 = uint8(medfilt2(I2,[L,L]));
    subplot(223);
    imshow(I3);
    title('中值滤波');
 
    %第三步:获得二值图
    I4(1:floor(5*R1/7),:)    = im2bw(I3(1:floor(5*R1/7),:)   , 0.9*graythresh(I3(1:floor(5*R1/7),:)));
    I4(1+floor(5*R1/7):R1,:) = im2bw(I3(1+floor(5*R1/7):R1,:),1.25*graythresh(I3(1+floor(5*R1/7):R1,:)));
    subplot(224);
    imshow(I4);
    title('二值图'); 
 
    %第四步:边缘图
    I5 = edge(I4,'canny');
 
 
    %第5步:提取上半身
    [Is,indy] = func_bodycatch(I4);
    Is2       = bwareaopen(Is,4000);
    figure(2);
    subplot(121);
    imshow(Is);
    title('提取上半身'); 
    
 
    [RX,CX]= size(Is2);
    IIIs = zeros(RX,CX);
    for iii = 1:RX
        for jjj = 1:CX
            if Is2(iii,jjj) == 1
               IIIs(iii,jjj) =  I3(iii,jjj);
            end
        end
    end
    subplot(122);
    imshow(uint8(IIIs));
    title('提取上半身'); 
    
    
    %人体的提取
    ff          = uint8(255*Is2);
    [rows,cols] = size(ff);
    [Ls,n]      = bwlabel(ff);
    X1          = [];
    X2          = [];
    Y1          = [];
    Y2          = [];
    flag        = 0;
 
    L1          = zeros(R,C,3);
    S           = [];
    for i=1:n
        [r,c]     = find(Ls==i);
        a1(i)     = max(r);
        a2(i)     = min(r);
        b1(i)     = max(c);
        b2(i)     = min(c);
        w(i)      = b1(i)-b2(i);
        h(i)      = a1(i)-a2(i);
        S(i)      = w(i)*h(i);
        X1        = [X1,a2(i)];
        X2        = [X2,a1(i)];
        Y1        = [Y1,b2(i)];
        Y2        = [Y2,b1(i)];
 
        L1(a2(i):a2(i)+2,b2(i):b1(i),1) = 0;
        L1(a2(i):a2(i)+2,b2(i):b1(i),2) = 0;
        L1(a2(i):a2(i)+2,b2(i):b1(i),3) = 255;
 
        L1(1.2*a1(i)-2:1.2*a1(i),b2(i):b1(i),1) = 0;
        L1(1.2*a1(i)-2:1.2*a1(i),b2(i):b1(i),2) = 0;
        L1(1.2*a1(i)-2:1.2*a1(i),b2(i):b1(i),3) = 255;   
 
        L1(a2(i):1.2*a1(i),b1(i)-2:b1(i),1) = 0;
        L1(a2(i):1.2*a1(i),b1(i)-2:b1(i),2) = 0;
        L1(a2(i):1.2*a1(i),b1(i)-2:b1(i),3) = 255;
 
        L1(a2(i):1.2*a1(i),b2(i):b2(i)+2,1) = 0;
        L1(a2(i):1.2*a1(i),b2(i):b2(i)+2,2) = 0;
        L1(a2(i):1.2*a1(i),b2(i):b2(i)+2,3) = 255;   
    end
    
    if  length(S) > 1
        LL = L1;
        [V,I] = sort(S);
        inds  = I(end-1:end);
 
        [RR,CC] = size(Is2);
        IF      = zeros(RR,CC);
        for i = 1:RR
            for j = 1:CC
                if Is2(i,j) == 1
                   IF(i,j) = I1(i,j); 
                else
                   IF(i,j) = 0; 
                end
            end
        end
 
        if X1(inds(1)) < X1(inds(2))
           IF1 = IF(X1(inds(1)):min(X2(inds(1)),RR),Y1(inds(1)):Y2(inds(1)));
           XC1 = Y2(inds(1));
           YC1 = X1(inds(1));
           IF2 = IF(X1(inds(2)):min(X2(inds(2)),RR),Y1(inds(2)):Y2(inds(2)));
           XC2 = Y2(inds(2));
           YC2 = X1(inds(2)); 
        else
           IF2 = IF(X1(inds(1)):min(X2(inds(1)),RR),Y1(inds(1)):Y2(inds(1)));
           XC2 = Y2(inds(1));
           YC2 = X1(inds(1));
           IF1 = IF(X1(inds(2)):min(X2(inds(2)),RR),Y1(inds(2)):Y2(inds(2))); 
           XC1 = Y2(inds(2));
           YC1 = X1(inds(2)); 
        end
    end
    if  length(S) == 1
        [IF1,IF2,CUT,IFS,L1] = func_body_fenge(Is2,X1,X2,Y1,Y2);
        LL = L1;
        XC1 = Y2-30;
        YC1 = X1;
        XC2 = CUT-30;
        YC2 = X1; 
    end
相关文章
|
2天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
48 31
|
2天前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
|
1天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
4天前
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
41 17
|
15天前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
16天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
39 10
|
17天前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
44 10
|
17天前
|
存储 监控 安全
云计算与网络安全:云服务、网络安全、信息安全等技术领域的融合与挑战
本文将探讨云计算与网络安全之间的关系,以及它们在云服务、网络安全和信息安全等技术领域中的融合与挑战。我们将分析云计算的优势和风险,以及如何通过网络安全措施来保护数据和应用程序。我们还将讨论如何确保云服务的可用性和可靠性,以及如何处理网络攻击和数据泄露等问题。最后,我们将提供一些关于如何在云计算环境中实现网络安全的建议和最佳实践。
|
19天前
|
监控 安全 网络安全
网络安全与信息安全:漏洞、加密与意识的交织
在数字时代的浪潮中,网络安全与信息安全成为维护数据完整性、保密性和可用性的关键。本文深入探讨了网络安全中的漏洞概念、加密技术的应用以及提升安全意识的重要性。通过实际案例分析,揭示了网络攻击的常见模式和防御策略,强调了教育和技术并重的安全理念。旨在为读者提供一套全面的网络安全知识框架,从而在日益复杂的网络环境中保护个人和组织的资产安全。
|
15天前
|
安全 网络安全 数据安全/隐私保护
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们日常生活中不可或缺的一部分。本文将深入探讨网络安全漏洞、加密技术和安全意识等方面的问题,并提供一些实用的建议和解决方案。我们将通过分析网络攻击的常见形式,揭示网络安全的脆弱性,并介绍如何利用加密技术来保护数据。此外,我们还将强调提高个人和企业的安全意识的重要性,以应对日益复杂的网络威胁。无论你是普通用户还是IT专业人士,这篇文章都将为你提供有价值的见解和指导。

热门文章

最新文章

下一篇
DataWorks