前端hook项目moblie总结笔记-ant design mobile Toast轻提示

简介: 前端hook项目moblie总结笔记-ant design mobile Toast轻提示

移动端的轻提示 content内容   duration 弹出提示的毫秒数 position位置

Toast.show({
content: '这条提示不会自动消失',
duration: 0,position:
 'top'})
相关文章
|
27天前
|
JavaScript 前端开发 Docker
前端全栈之路Deno篇(二):几行代码打包后接近100M?别慌,带你掌握Deno2.0的安装到项目构建全流程、剖析构建物并了解其好处
在使用 Deno 构建项目时,生成的可执行文件体积较大,通常接近 100 MB,而 Node.js 构建的项目体积则要小得多。这是由于 Deno 包含了完整的 V8 引擎和运行时,使其能够在目标设备上独立运行,无需额外安装依赖。尽管体积较大,但 Deno 提供了更好的安全性和部署便利性。通过裁剪功能、使用压缩工具等方法,可以优化可执行文件的体积。
108 3
前端全栈之路Deno篇(二):几行代码打包后接近100M?别慌,带你掌握Deno2.0的安装到项目构建全流程、剖析构建物并了解其好处
|
16天前
|
前端开发 Unix 测试技术
揭秘!前端大牛们如何高效管理项目,确保按时交付高质量作品!
【10月更文挑战第30天】前端开发项目涉及从需求分析到最终交付的多个环节。本文解答了如何制定合理项目计划、提高团队协作效率、确保代码质量和应对项目风险等问题,帮助你学习前端大牛们的项目管理技巧,确保按时交付高质量的作品。
29 2
|
28天前
|
缓存 前端开发 JavaScript
前端架构思考:代码复用带来的隐形耦合,可能让大模型造轮子是更好的选择-从 CDN 依赖包被删导致个站打不开到数年前因11 行代码导致上千项目崩溃谈谈npm黑洞 - 统计下你的项目有多少个依赖吧!
最近,我的个人网站因免费CDN上的Vue.js包路径变更导致无法访问,引发了我对前端依赖管理的深刻反思。文章探讨了NPM依赖陷阱、开源库所有权与维护压力、NPM生态问题,并提出减少不必要的依赖、重视模块设计等建议,以提升前端项目的稳定性和可控性。通过“left_pad”事件及个人经历,强调了依赖管理的重要性和让大模型代替人造轮子的潜在收益
|
1月前
|
前端开发 JavaScript 开发工具
前端代码规范和质量是确保项目可维护性、可读性和可扩展性的关键(三)
前端代码规范和质量是确保项目可维护性、可读性和可扩展性的关键(三)
35 0
|
1月前
|
Web App开发 前端开发 JavaScript
前端代码规范和质量是确保项目可维护性、可读性和可扩展性的关键(二)
前端代码规范和质量是确保项目可维护性、可读性和可扩展性的关键(二)
49 0
|
1月前
|
存储 人工智能 前端开发
前端大模型应用笔记(三):Vue3+Antdv+transformers+本地模型实现浏览器端侧增强搜索
本文介绍了一个纯前端实现的增强列表搜索应用,通过使用Transformer模型,实现了更智能的搜索功能,如使用“番茄”可以搜索到“西红柿”。项目基于Vue3和Ant Design Vue,使用了Xenova的bge-base-zh-v1.5模型。文章详细介绍了从环境搭建、数据准备到具体实现的全过程,并展示了实际效果和待改进点。
133 2
|
1月前
|
JavaScript 前端开发 程序员
前端学习笔记——node.js
前端学习笔记——node.js
42 0
|
1月前
|
人工智能 自然语言处理 运维
前端大模型应用笔记(一):两个指令反过来说大模型就理解不了啦?或许该让第三者插足啦 -通过引入中间LLM预处理用户输入以提高多任务处理能力
本文探讨了在多任务处理场景下,自然语言指令解析的困境及解决方案。通过增加一个LLM解析层,将复杂的指令拆解为多个明确的步骤,明确操作类型与对象识别,处理任务依赖关系,并将自然语言转化为具体的工具命令,从而提高指令解析的准确性和执行效率。
|
1月前
|
存储 弹性计算 算法
前端大模型应用笔记(四):如何在资源受限例如1核和1G内存的端侧或ECS上运行一个合适的向量存储库及如何优化
本文探讨了在资源受限的嵌入式设备(如1核处理器和1GB内存)上实现高效向量存储和检索的方法,旨在支持端侧大模型应用。文章分析了Annoy、HNSWLib、NMSLib、FLANN、VP-Trees和Lshbox等向量存储库的特点与适用场景,推荐Annoy作为多数情况下的首选方案,并提出了数据预处理、索引优化、查询优化等策略以提升性能。通过这些方法,即使在资源受限的环境中也能实现高效的向量检索。
|
1月前
|
机器学习/深度学习 弹性计算 自然语言处理
前端大模型应用笔记(二):最新llama3.2小参数版本1B的古董机测试 - 支持128K上下文,表现优异,和移动端更配
llama3.1支持128K上下文,6万字+输入,适用于多种场景。模型能力超出预期,但处理中文时需加中英翻译。测试显示,其英文支持较好,中文则需改进。llama3.2 1B参数量小,适合移动端和资源受限环境,可在阿里云2vCPU和4G ECS上运行。